Metamath Proof Explorer


Theorem nmobndi

Description: Two ways to express that an operator is bounded. (Contributed by NM, 11-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nmoubi.1 𝑋 = ( BaseSet ‘ 𝑈 )
nmoubi.y 𝑌 = ( BaseSet ‘ 𝑊 )
nmoubi.l 𝐿 = ( normCV𝑈 )
nmoubi.m 𝑀 = ( normCV𝑊 )
nmoubi.3 𝑁 = ( 𝑈 normOpOLD 𝑊 )
nmoubi.u 𝑈 ∈ NrmCVec
nmoubi.w 𝑊 ∈ NrmCVec
Assertion nmobndi ( 𝑇 : 𝑋𝑌 → ( ( 𝑁𝑇 ) ∈ ℝ ↔ ∃ 𝑟 ∈ ℝ ∀ 𝑦𝑋 ( ( 𝐿𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇𝑦 ) ) ≤ 𝑟 ) ) )

Proof

Step Hyp Ref Expression
1 nmoubi.1 𝑋 = ( BaseSet ‘ 𝑈 )
2 nmoubi.y 𝑌 = ( BaseSet ‘ 𝑊 )
3 nmoubi.l 𝐿 = ( normCV𝑈 )
4 nmoubi.m 𝑀 = ( normCV𝑊 )
5 nmoubi.3 𝑁 = ( 𝑈 normOpOLD 𝑊 )
6 nmoubi.u 𝑈 ∈ NrmCVec
7 nmoubi.w 𝑊 ∈ NrmCVec
8 leid ( ( 𝑁𝑇 ) ∈ ℝ → ( 𝑁𝑇 ) ≤ ( 𝑁𝑇 ) )
9 breq2 ( 𝑟 = ( 𝑁𝑇 ) → ( ( 𝑁𝑇 ) ≤ 𝑟 ↔ ( 𝑁𝑇 ) ≤ ( 𝑁𝑇 ) ) )
10 9 rspcev ( ( ( 𝑁𝑇 ) ∈ ℝ ∧ ( 𝑁𝑇 ) ≤ ( 𝑁𝑇 ) ) → ∃ 𝑟 ∈ ℝ ( 𝑁𝑇 ) ≤ 𝑟 )
11 8 10 mpdan ( ( 𝑁𝑇 ) ∈ ℝ → ∃ 𝑟 ∈ ℝ ( 𝑁𝑇 ) ≤ 𝑟 )
12 1 2 5 nmoxr ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋𝑌 ) → ( 𝑁𝑇 ) ∈ ℝ* )
13 6 7 12 mp3an12 ( 𝑇 : 𝑋𝑌 → ( 𝑁𝑇 ) ∈ ℝ* )
14 13 adantr ( ( 𝑇 : 𝑋𝑌 ∧ ( 𝑟 ∈ ℝ ∧ ( 𝑁𝑇 ) ≤ 𝑟 ) ) → ( 𝑁𝑇 ) ∈ ℝ* )
15 simprl ( ( 𝑇 : 𝑋𝑌 ∧ ( 𝑟 ∈ ℝ ∧ ( 𝑁𝑇 ) ≤ 𝑟 ) ) → 𝑟 ∈ ℝ )
16 1 2 5 nmogtmnf ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋𝑌 ) → -∞ < ( 𝑁𝑇 ) )
17 6 7 16 mp3an12 ( 𝑇 : 𝑋𝑌 → -∞ < ( 𝑁𝑇 ) )
18 17 adantr ( ( 𝑇 : 𝑋𝑌 ∧ ( 𝑟 ∈ ℝ ∧ ( 𝑁𝑇 ) ≤ 𝑟 ) ) → -∞ < ( 𝑁𝑇 ) )
19 simprr ( ( 𝑇 : 𝑋𝑌 ∧ ( 𝑟 ∈ ℝ ∧ ( 𝑁𝑇 ) ≤ 𝑟 ) ) → ( 𝑁𝑇 ) ≤ 𝑟 )
20 xrre ( ( ( ( 𝑁𝑇 ) ∈ ℝ*𝑟 ∈ ℝ ) ∧ ( -∞ < ( 𝑁𝑇 ) ∧ ( 𝑁𝑇 ) ≤ 𝑟 ) ) → ( 𝑁𝑇 ) ∈ ℝ )
21 14 15 18 19 20 syl22anc ( ( 𝑇 : 𝑋𝑌 ∧ ( 𝑟 ∈ ℝ ∧ ( 𝑁𝑇 ) ≤ 𝑟 ) ) → ( 𝑁𝑇 ) ∈ ℝ )
22 21 rexlimdvaa ( 𝑇 : 𝑋𝑌 → ( ∃ 𝑟 ∈ ℝ ( 𝑁𝑇 ) ≤ 𝑟 → ( 𝑁𝑇 ) ∈ ℝ ) )
23 11 22 impbid2 ( 𝑇 : 𝑋𝑌 → ( ( 𝑁𝑇 ) ∈ ℝ ↔ ∃ 𝑟 ∈ ℝ ( 𝑁𝑇 ) ≤ 𝑟 ) )
24 rexr ( 𝑟 ∈ ℝ → 𝑟 ∈ ℝ* )
25 1 2 3 4 5 6 7 nmoubi ( ( 𝑇 : 𝑋𝑌𝑟 ∈ ℝ* ) → ( ( 𝑁𝑇 ) ≤ 𝑟 ↔ ∀ 𝑦𝑋 ( ( 𝐿𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇𝑦 ) ) ≤ 𝑟 ) ) )
26 24 25 sylan2 ( ( 𝑇 : 𝑋𝑌𝑟 ∈ ℝ ) → ( ( 𝑁𝑇 ) ≤ 𝑟 ↔ ∀ 𝑦𝑋 ( ( 𝐿𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇𝑦 ) ) ≤ 𝑟 ) ) )
27 26 rexbidva ( 𝑇 : 𝑋𝑌 → ( ∃ 𝑟 ∈ ℝ ( 𝑁𝑇 ) ≤ 𝑟 ↔ ∃ 𝑟 ∈ ℝ ∀ 𝑦𝑋 ( ( 𝐿𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇𝑦 ) ) ≤ 𝑟 ) ) )
28 23 27 bitrd ( 𝑇 : 𝑋𝑌 → ( ( 𝑁𝑇 ) ∈ ℝ ↔ ∃ 𝑟 ∈ ℝ ∀ 𝑦𝑋 ( ( 𝐿𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇𝑦 ) ) ≤ 𝑟 ) ) )