| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmoubi.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | nmoubi.y | ⊢ 𝑌  =  ( BaseSet ‘ 𝑊 ) | 
						
							| 3 |  | nmoubi.l | ⊢ 𝐿  =  ( normCV ‘ 𝑈 ) | 
						
							| 4 |  | nmoubi.m | ⊢ 𝑀  =  ( normCV ‘ 𝑊 ) | 
						
							| 5 |  | nmoubi.3 | ⊢ 𝑁  =  ( 𝑈  normOpOLD  𝑊 ) | 
						
							| 6 |  | nmoubi.u | ⊢ 𝑈  ∈  NrmCVec | 
						
							| 7 |  | nmoubi.w | ⊢ 𝑊  ∈  NrmCVec | 
						
							| 8 |  | leid | ⊢ ( ( 𝑁 ‘ 𝑇 )  ∈  ℝ  →  ( 𝑁 ‘ 𝑇 )  ≤  ( 𝑁 ‘ 𝑇 ) ) | 
						
							| 9 |  | breq2 | ⊢ ( 𝑟  =  ( 𝑁 ‘ 𝑇 )  →  ( ( 𝑁 ‘ 𝑇 )  ≤  𝑟  ↔  ( 𝑁 ‘ 𝑇 )  ≤  ( 𝑁 ‘ 𝑇 ) ) ) | 
						
							| 10 | 9 | rspcev | ⊢ ( ( ( 𝑁 ‘ 𝑇 )  ∈  ℝ  ∧  ( 𝑁 ‘ 𝑇 )  ≤  ( 𝑁 ‘ 𝑇 ) )  →  ∃ 𝑟  ∈  ℝ ( 𝑁 ‘ 𝑇 )  ≤  𝑟 ) | 
						
							| 11 | 8 10 | mpdan | ⊢ ( ( 𝑁 ‘ 𝑇 )  ∈  ℝ  →  ∃ 𝑟  ∈  ℝ ( 𝑁 ‘ 𝑇 )  ≤  𝑟 ) | 
						
							| 12 | 1 2 5 | nmoxr | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec  ∧  𝑇 : 𝑋 ⟶ 𝑌 )  →  ( 𝑁 ‘ 𝑇 )  ∈  ℝ* ) | 
						
							| 13 | 6 7 12 | mp3an12 | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌  →  ( 𝑁 ‘ 𝑇 )  ∈  ℝ* ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  ( 𝑟  ∈  ℝ  ∧  ( 𝑁 ‘ 𝑇 )  ≤  𝑟 ) )  →  ( 𝑁 ‘ 𝑇 )  ∈  ℝ* ) | 
						
							| 15 |  | simprl | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  ( 𝑟  ∈  ℝ  ∧  ( 𝑁 ‘ 𝑇 )  ≤  𝑟 ) )  →  𝑟  ∈  ℝ ) | 
						
							| 16 | 1 2 5 | nmogtmnf | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec  ∧  𝑇 : 𝑋 ⟶ 𝑌 )  →  -∞  <  ( 𝑁 ‘ 𝑇 ) ) | 
						
							| 17 | 6 7 16 | mp3an12 | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌  →  -∞  <  ( 𝑁 ‘ 𝑇 ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  ( 𝑟  ∈  ℝ  ∧  ( 𝑁 ‘ 𝑇 )  ≤  𝑟 ) )  →  -∞  <  ( 𝑁 ‘ 𝑇 ) ) | 
						
							| 19 |  | simprr | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  ( 𝑟  ∈  ℝ  ∧  ( 𝑁 ‘ 𝑇 )  ≤  𝑟 ) )  →  ( 𝑁 ‘ 𝑇 )  ≤  𝑟 ) | 
						
							| 20 |  | xrre | ⊢ ( ( ( ( 𝑁 ‘ 𝑇 )  ∈  ℝ*  ∧  𝑟  ∈  ℝ )  ∧  ( -∞  <  ( 𝑁 ‘ 𝑇 )  ∧  ( 𝑁 ‘ 𝑇 )  ≤  𝑟 ) )  →  ( 𝑁 ‘ 𝑇 )  ∈  ℝ ) | 
						
							| 21 | 14 15 18 19 20 | syl22anc | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  ( 𝑟  ∈  ℝ  ∧  ( 𝑁 ‘ 𝑇 )  ≤  𝑟 ) )  →  ( 𝑁 ‘ 𝑇 )  ∈  ℝ ) | 
						
							| 22 | 21 | rexlimdvaa | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌  →  ( ∃ 𝑟  ∈  ℝ ( 𝑁 ‘ 𝑇 )  ≤  𝑟  →  ( 𝑁 ‘ 𝑇 )  ∈  ℝ ) ) | 
						
							| 23 | 11 22 | impbid2 | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌  →  ( ( 𝑁 ‘ 𝑇 )  ∈  ℝ  ↔  ∃ 𝑟  ∈  ℝ ( 𝑁 ‘ 𝑇 )  ≤  𝑟 ) ) | 
						
							| 24 |  | rexr | ⊢ ( 𝑟  ∈  ℝ  →  𝑟  ∈  ℝ* ) | 
						
							| 25 | 1 2 3 4 5 6 7 | nmoubi | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  𝑟  ∈  ℝ* )  →  ( ( 𝑁 ‘ 𝑇 )  ≤  𝑟  ↔  ∀ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑟 ) ) ) | 
						
							| 26 | 24 25 | sylan2 | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  𝑟  ∈  ℝ )  →  ( ( 𝑁 ‘ 𝑇 )  ≤  𝑟  ↔  ∀ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑟 ) ) ) | 
						
							| 27 | 26 | rexbidva | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌  →  ( ∃ 𝑟  ∈  ℝ ( 𝑁 ‘ 𝑇 )  ≤  𝑟  ↔  ∃ 𝑟  ∈  ℝ ∀ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑟 ) ) ) | 
						
							| 28 | 23 27 | bitrd | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌  →  ( ( 𝑁 ‘ 𝑇 )  ∈  ℝ  ↔  ∃ 𝑟  ∈  ℝ ∀ 𝑦  ∈  𝑋 ( ( 𝐿 ‘ 𝑦 )  ≤  1  →  ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) )  ≤  𝑟 ) ) ) |