| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmoubi.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
| 2 |
|
nmoubi.y |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
| 3 |
|
nmoubi.l |
⊢ 𝐿 = ( normCV ‘ 𝑈 ) |
| 4 |
|
nmoubi.m |
⊢ 𝑀 = ( normCV ‘ 𝑊 ) |
| 5 |
|
nmoubi.3 |
⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) |
| 6 |
|
nmoubi.u |
⊢ 𝑈 ∈ NrmCVec |
| 7 |
|
nmoubi.w |
⊢ 𝑊 ∈ NrmCVec |
| 8 |
|
impexp |
⊢ ( ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 ) → ∃ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ↔ ( 𝑓 : ℕ ⟶ 𝑋 → ( ∀ 𝑘 ∈ ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ∃ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ) |
| 9 |
|
r19.35 |
⊢ ( ∃ 𝑘 ∈ ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ↔ ( ∀ 𝑘 ∈ ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ∃ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) |
| 10 |
9
|
imbi2i |
⊢ ( ( 𝑓 : ℕ ⟶ 𝑋 → ∃ 𝑘 ∈ ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ↔ ( 𝑓 : ℕ ⟶ 𝑋 → ( ∀ 𝑘 ∈ ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ∃ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ) |
| 11 |
8 10
|
bitr4i |
⊢ ( ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 ) → ∃ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ↔ ( 𝑓 : ℕ ⟶ 𝑋 → ∃ 𝑘 ∈ ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ) |
| 12 |
11
|
albii |
⊢ ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 ) → ∃ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ↔ ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 → ∃ 𝑘 ∈ ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ) |
| 13 |
1
|
fvexi |
⊢ 𝑋 ∈ V |
| 14 |
|
nnenom |
⊢ ℕ ≈ ω |
| 15 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑘 ) → ( 𝐿 ‘ 𝑦 ) = ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ) |
| 16 |
15
|
breq1d |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑘 ) → ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ↔ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 ) ) |
| 17 |
|
2fveq3 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑘 ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) |
| 18 |
17
|
breq1d |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑘 ) → ( ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ↔ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) |
| 19 |
16 18
|
imbi12d |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑘 ) → ( ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ↔ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ) |
| 20 |
19
|
notbid |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑘 ) → ( ¬ ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ↔ ¬ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ) |
| 21 |
13 14 20
|
axcc4 |
⊢ ( ∀ 𝑘 ∈ ℕ ∃ 𝑦 ∈ 𝑋 ¬ ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ¬ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ) |
| 22 |
21
|
con3i |
⊢ ( ¬ ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ¬ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) → ¬ ∀ 𝑘 ∈ ℕ ∃ 𝑦 ∈ 𝑋 ¬ ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ) |
| 23 |
|
dfrex2 |
⊢ ( ∃ 𝑘 ∈ ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ↔ ¬ ∀ 𝑘 ∈ ℕ ¬ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) |
| 24 |
23
|
imbi2i |
⊢ ( ( 𝑓 : ℕ ⟶ 𝑋 → ∃ 𝑘 ∈ ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ↔ ( 𝑓 : ℕ ⟶ 𝑋 → ¬ ∀ 𝑘 ∈ ℕ ¬ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ) |
| 25 |
24
|
albii |
⊢ ( ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 → ∃ 𝑘 ∈ ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ↔ ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 → ¬ ∀ 𝑘 ∈ ℕ ¬ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ) |
| 26 |
|
alinexa |
⊢ ( ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 → ¬ ∀ 𝑘 ∈ ℕ ¬ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ↔ ¬ ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ¬ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ) |
| 27 |
25 26
|
bitri |
⊢ ( ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 → ∃ 𝑘 ∈ ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ↔ ¬ ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ¬ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ) |
| 28 |
|
dfral2 |
⊢ ( ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ↔ ¬ ∃ 𝑦 ∈ 𝑋 ¬ ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ) |
| 29 |
28
|
rexbii |
⊢ ( ∃ 𝑘 ∈ ℕ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ↔ ∃ 𝑘 ∈ ℕ ¬ ∃ 𝑦 ∈ 𝑋 ¬ ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ) |
| 30 |
|
rexnal |
⊢ ( ∃ 𝑘 ∈ ℕ ¬ ∃ 𝑦 ∈ 𝑋 ¬ ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ↔ ¬ ∀ 𝑘 ∈ ℕ ∃ 𝑦 ∈ 𝑋 ¬ ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ) |
| 31 |
29 30
|
bitri |
⊢ ( ∃ 𝑘 ∈ ℕ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ↔ ¬ ∀ 𝑘 ∈ ℕ ∃ 𝑦 ∈ 𝑋 ¬ ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ) |
| 32 |
22 27 31
|
3imtr4i |
⊢ ( ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 → ∃ 𝑘 ∈ ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) → ∃ 𝑘 ∈ ℕ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ) |
| 33 |
|
nnre |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) |
| 34 |
33
|
anim1i |
⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ) → ( 𝑘 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ) ) |
| 35 |
34
|
reximi2 |
⊢ ( ∃ 𝑘 ∈ ℕ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) → ∃ 𝑘 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ) |
| 36 |
32 35
|
syl |
⊢ ( ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 → ∃ 𝑘 ∈ ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) → ∃ 𝑘 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ) |
| 37 |
12 36
|
sylbi |
⊢ ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 ) → ∃ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) → ∃ 𝑘 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ) |
| 38 |
1 2 3 4 5 6 7
|
nmobndi |
⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ∃ 𝑘 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ) ) |
| 39 |
37 38
|
imbitrrid |
⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 ) → ∃ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) → ( 𝑁 ‘ 𝑇 ) ∈ ℝ ) ) |
| 40 |
39
|
imp |
⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 ) → ∃ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) → ( 𝑁 ‘ 𝑇 ) ∈ ℝ ) |