Step |
Hyp |
Ref |
Expression |
1 |
|
nmoubi.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
nmoubi.y |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
3 |
|
nmoubi.l |
⊢ 𝐿 = ( normCV ‘ 𝑈 ) |
4 |
|
nmoubi.m |
⊢ 𝑀 = ( normCV ‘ 𝑊 ) |
5 |
|
nmoubi.3 |
⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) |
6 |
|
nmoubi.u |
⊢ 𝑈 ∈ NrmCVec |
7 |
|
nmoubi.w |
⊢ 𝑊 ∈ NrmCVec |
8 |
|
impexp |
⊢ ( ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 ) → ∃ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ↔ ( 𝑓 : ℕ ⟶ 𝑋 → ( ∀ 𝑘 ∈ ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ∃ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ) |
9 |
|
r19.35 |
⊢ ( ∃ 𝑘 ∈ ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ↔ ( ∀ 𝑘 ∈ ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ∃ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) |
10 |
9
|
imbi2i |
⊢ ( ( 𝑓 : ℕ ⟶ 𝑋 → ∃ 𝑘 ∈ ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ↔ ( 𝑓 : ℕ ⟶ 𝑋 → ( ∀ 𝑘 ∈ ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ∃ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ) |
11 |
8 10
|
bitr4i |
⊢ ( ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 ) → ∃ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ↔ ( 𝑓 : ℕ ⟶ 𝑋 → ∃ 𝑘 ∈ ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ) |
12 |
11
|
albii |
⊢ ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 ) → ∃ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ↔ ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 → ∃ 𝑘 ∈ ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ) |
13 |
|
nnex |
⊢ ℕ ∈ V |
14 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑘 ) → ( 𝐿 ‘ 𝑦 ) = ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ) |
15 |
14
|
breq1d |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑘 ) → ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ↔ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 ) ) |
16 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑘 ) → ( 𝑇 ‘ 𝑦 ) = ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) |
17 |
16
|
fveq2d |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑘 ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) |
18 |
17
|
breq1d |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑘 ) → ( ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ↔ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) |
19 |
15 18
|
imbi12d |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑘 ) → ( ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ↔ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) ) |
20 |
13 19
|
ac6n |
⊢ ( ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 → ∃ 𝑘 ∈ ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) → ∃ 𝑘 ∈ ℕ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ) |
21 |
|
nnre |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) |
22 |
21
|
anim1i |
⊢ ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ) → ( 𝑘 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ) ) |
23 |
22
|
reximi2 |
⊢ ( ∃ 𝑘 ∈ ℕ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) → ∃ 𝑘 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ) |
24 |
20 23
|
syl |
⊢ ( ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 → ∃ 𝑘 ∈ ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) → ∃ 𝑘 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ) |
25 |
12 24
|
sylbi |
⊢ ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 ) → ∃ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) → ∃ 𝑘 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ) |
26 |
1 2 3 4 5 6 7
|
nmobndi |
⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ∃ 𝑘 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑘 ) ) ) |
27 |
25 26
|
syl5ibr |
⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 ) → ∃ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) → ( 𝑁 ‘ 𝑇 ) ∈ ℝ ) ) |
28 |
27
|
imp |
⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 ) → ∃ 𝑘 ∈ ℕ ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ≤ 𝑘 ) ) → ( 𝑁 ‘ 𝑇 ) ∈ ℝ ) |