Step |
Hyp |
Ref |
Expression |
1 |
|
nmods.n |
⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) |
2 |
|
nmods.v |
⊢ 𝑉 = ( Base ‘ 𝑆 ) |
3 |
|
nmods.c |
⊢ 𝐶 = ( dist ‘ 𝑆 ) |
4 |
|
nmods.d |
⊢ 𝐷 = ( dist ‘ 𝑇 ) |
5 |
|
simp1 |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ) |
6 |
|
nghmrcl1 |
⊢ ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) → 𝑆 ∈ NrmGrp ) |
7 |
|
ngpgrp |
⊢ ( 𝑆 ∈ NrmGrp → 𝑆 ∈ Grp ) |
8 |
6 7
|
syl |
⊢ ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) → 𝑆 ∈ Grp ) |
9 |
|
eqid |
⊢ ( -g ‘ 𝑆 ) = ( -g ‘ 𝑆 ) |
10 |
2 9
|
grpsubcl |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ( -g ‘ 𝑆 ) 𝐵 ) ∈ 𝑉 ) |
11 |
8 10
|
syl3an1 |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ( -g ‘ 𝑆 ) 𝐵 ) ∈ 𝑉 ) |
12 |
|
eqid |
⊢ ( norm ‘ 𝑆 ) = ( norm ‘ 𝑆 ) |
13 |
|
eqid |
⊢ ( norm ‘ 𝑇 ) = ( norm ‘ 𝑇 ) |
14 |
1 2 12 13
|
nmoi |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ ( 𝐴 ( -g ‘ 𝑆 ) 𝐵 ) ∈ 𝑉 ) → ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ ( 𝐴 ( -g ‘ 𝑆 ) 𝐵 ) ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) · ( ( norm ‘ 𝑆 ) ‘ ( 𝐴 ( -g ‘ 𝑆 ) 𝐵 ) ) ) ) |
15 |
5 11 14
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ ( 𝐴 ( -g ‘ 𝑆 ) 𝐵 ) ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) · ( ( norm ‘ 𝑆 ) ‘ ( 𝐴 ( -g ‘ 𝑆 ) 𝐵 ) ) ) ) |
16 |
|
nghmrcl2 |
⊢ ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) → 𝑇 ∈ NrmGrp ) |
17 |
16
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝑇 ∈ NrmGrp ) |
18 |
|
nghmghm |
⊢ ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
19 |
18
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
20 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
21 |
2 20
|
ghmf |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
22 |
19 21
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
23 |
|
simp2 |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) |
24 |
22 23
|
ffvelrnd |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐹 ‘ 𝐴 ) ∈ ( Base ‘ 𝑇 ) ) |
25 |
|
simp3 |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ 𝑉 ) |
26 |
22 25
|
ffvelrnd |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐹 ‘ 𝐵 ) ∈ ( Base ‘ 𝑇 ) ) |
27 |
|
eqid |
⊢ ( -g ‘ 𝑇 ) = ( -g ‘ 𝑇 ) |
28 |
13 20 27 4
|
ngpds |
⊢ ( ( 𝑇 ∈ NrmGrp ∧ ( 𝐹 ‘ 𝐴 ) ∈ ( Base ‘ 𝑇 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ ( Base ‘ 𝑇 ) ) → ( ( 𝐹 ‘ 𝐴 ) 𝐷 ( 𝐹 ‘ 𝐵 ) ) = ( ( norm ‘ 𝑇 ) ‘ ( ( 𝐹 ‘ 𝐴 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝐵 ) ) ) ) |
29 |
17 24 26 28
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝐴 ) 𝐷 ( 𝐹 ‘ 𝐵 ) ) = ( ( norm ‘ 𝑇 ) ‘ ( ( 𝐹 ‘ 𝐴 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝐵 ) ) ) ) |
30 |
2 9 27
|
ghmsub |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐹 ‘ ( 𝐴 ( -g ‘ 𝑆 ) 𝐵 ) ) = ( ( 𝐹 ‘ 𝐴 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝐵 ) ) ) |
31 |
18 30
|
syl3an1 |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐹 ‘ ( 𝐴 ( -g ‘ 𝑆 ) 𝐵 ) ) = ( ( 𝐹 ‘ 𝐴 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝐵 ) ) ) |
32 |
31
|
fveq2d |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ ( 𝐴 ( -g ‘ 𝑆 ) 𝐵 ) ) ) = ( ( norm ‘ 𝑇 ) ‘ ( ( 𝐹 ‘ 𝐴 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝐵 ) ) ) ) |
33 |
29 32
|
eqtr4d |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝐴 ) 𝐷 ( 𝐹 ‘ 𝐵 ) ) = ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ ( 𝐴 ( -g ‘ 𝑆 ) 𝐵 ) ) ) ) |
34 |
12 2 9 3
|
ngpds |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 𝐶 𝐵 ) = ( ( norm ‘ 𝑆 ) ‘ ( 𝐴 ( -g ‘ 𝑆 ) 𝐵 ) ) ) |
35 |
6 34
|
syl3an1 |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 𝐶 𝐵 ) = ( ( norm ‘ 𝑆 ) ‘ ( 𝐴 ( -g ‘ 𝑆 ) 𝐵 ) ) ) |
36 |
35
|
oveq2d |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝐹 ) · ( 𝐴 𝐶 𝐵 ) ) = ( ( 𝑁 ‘ 𝐹 ) · ( ( norm ‘ 𝑆 ) ‘ ( 𝐴 ( -g ‘ 𝑆 ) 𝐵 ) ) ) ) |
37 |
15 33 36
|
3brtr4d |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐹 ‘ 𝐴 ) 𝐷 ( 𝐹 ‘ 𝐵 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) · ( 𝐴 𝐶 𝐵 ) ) ) |