Step |
Hyp |
Ref |
Expression |
1 |
|
nmo0.1 |
⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) |
2 |
|
nmo0.2 |
⊢ 𝑉 = ( Base ‘ 𝑆 ) |
3 |
|
nmo0.3 |
⊢ 0 = ( 0g ‘ 𝑇 ) |
4 |
|
id |
⊢ ( ( 𝑁 ‘ 𝐹 ) = 0 → ( 𝑁 ‘ 𝐹 ) = 0 ) |
5 |
|
0re |
⊢ 0 ∈ ℝ |
6 |
4 5
|
eqeltrdi |
⊢ ( ( 𝑁 ‘ 𝐹 ) = 0 → ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) |
7 |
1
|
isnghm2 |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ↔ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ) |
8 |
7
|
biimpar |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) → 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ) |
9 |
6 8
|
sylan2 |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑁 ‘ 𝐹 ) = 0 ) → 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ) |
10 |
|
eqid |
⊢ ( norm ‘ 𝑆 ) = ( norm ‘ 𝑆 ) |
11 |
|
eqid |
⊢ ( norm ‘ 𝑇 ) = ( norm ‘ 𝑇 ) |
12 |
1 2 10 11
|
nmoi |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) ) |
13 |
9 12
|
sylan |
⊢ ( ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑁 ‘ 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) ) |
14 |
|
simplr |
⊢ ( ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑁 ‘ 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝑁 ‘ 𝐹 ) = 0 ) |
15 |
14
|
oveq1d |
⊢ ( ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑁 ‘ 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝐹 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) = ( 0 · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) ) |
16 |
|
simpl1 |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑁 ‘ 𝐹 ) = 0 ) → 𝑆 ∈ NrmGrp ) |
17 |
2 10
|
nmcl |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉 ) → ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ∈ ℝ ) |
18 |
16 17
|
sylan |
⊢ ( ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑁 ‘ 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ∈ ℝ ) |
19 |
18
|
recnd |
⊢ ( ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑁 ‘ 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ∈ ℂ ) |
20 |
19
|
mul02d |
⊢ ( ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑁 ‘ 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝑉 ) → ( 0 · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) = 0 ) |
21 |
15 20
|
eqtrd |
⊢ ( ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑁 ‘ 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝐹 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) = 0 ) |
22 |
13 21
|
breqtrd |
⊢ ( ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑁 ‘ 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 0 ) |
23 |
|
simpll2 |
⊢ ( ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑁 ‘ 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝑉 ) → 𝑇 ∈ NrmGrp ) |
24 |
|
simpl3 |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑁 ‘ 𝐹 ) = 0 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
25 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
26 |
2 25
|
ghmf |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
27 |
24 26
|
syl |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑁 ‘ 𝐹 ) = 0 ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
28 |
27
|
ffvelrnda |
⊢ ( ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑁 ‘ 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ) |
29 |
25 11
|
nmge0 |
⊢ ( ( 𝑇 ∈ NrmGrp ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ) → 0 ≤ ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
30 |
23 28 29
|
syl2anc |
⊢ ( ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑁 ‘ 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝑉 ) → 0 ≤ ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
31 |
25 11
|
nmcl |
⊢ ( ( 𝑇 ∈ NrmGrp ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ) → ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
32 |
23 28 31
|
syl2anc |
⊢ ( ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑁 ‘ 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
33 |
|
letri3 |
⊢ ( ( ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) = 0 ↔ ( ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 0 ∧ 0 ≤ ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
34 |
32 5 33
|
sylancl |
⊢ ( ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑁 ‘ 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) = 0 ↔ ( ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 0 ∧ 0 ≤ ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
35 |
22 30 34
|
mpbir2and |
⊢ ( ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑁 ‘ 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) = 0 ) |
36 |
25 11 3
|
nmeq0 |
⊢ ( ( 𝑇 ∈ NrmGrp ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ) → ( ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) = 0 ↔ ( 𝐹 ‘ 𝑥 ) = 0 ) ) |
37 |
23 28 36
|
syl2anc |
⊢ ( ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑁 ‘ 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) = 0 ↔ ( 𝐹 ‘ 𝑥 ) = 0 ) ) |
38 |
35 37
|
mpbid |
⊢ ( ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑁 ‘ 𝐹 ) = 0 ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
39 |
38
|
mpteq2dva |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑁 ‘ 𝐹 ) = 0 ) → ( 𝑥 ∈ 𝑉 ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑉 ↦ 0 ) ) |
40 |
27
|
feqmptd |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑁 ‘ 𝐹 ) = 0 ) → 𝐹 = ( 𝑥 ∈ 𝑉 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
41 |
|
fconstmpt |
⊢ ( 𝑉 × { 0 } ) = ( 𝑥 ∈ 𝑉 ↦ 0 ) |
42 |
41
|
a1i |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑁 ‘ 𝐹 ) = 0 ) → ( 𝑉 × { 0 } ) = ( 𝑥 ∈ 𝑉 ↦ 0 ) ) |
43 |
39 40 42
|
3eqtr4d |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑁 ‘ 𝐹 ) = 0 ) → 𝐹 = ( 𝑉 × { 0 } ) ) |
44 |
43
|
ex |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( ( 𝑁 ‘ 𝐹 ) = 0 → 𝐹 = ( 𝑉 × { 0 } ) ) ) |
45 |
1 2 3
|
nmo0 |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → ( 𝑁 ‘ ( 𝑉 × { 0 } ) ) = 0 ) |
46 |
45
|
3adant3 |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝑁 ‘ ( 𝑉 × { 0 } ) ) = 0 ) |
47 |
|
fveqeq2 |
⊢ ( 𝐹 = ( 𝑉 × { 0 } ) → ( ( 𝑁 ‘ 𝐹 ) = 0 ↔ ( 𝑁 ‘ ( 𝑉 × { 0 } ) ) = 0 ) ) |
48 |
46 47
|
syl5ibrcom |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝐹 = ( 𝑉 × { 0 } ) → ( 𝑁 ‘ 𝐹 ) = 0 ) ) |
49 |
44 48
|
impbid |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( ( 𝑁 ‘ 𝐹 ) = 0 ↔ 𝐹 = ( 𝑉 × { 0 } ) ) ) |