| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmofval.1 | ⊢ 𝑁  =  ( 𝑆  normOp  𝑇 ) | 
						
							| 2 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 3 |  | eqid | ⊢ ( norm ‘ 𝑆 )  =  ( norm ‘ 𝑆 ) | 
						
							| 4 |  | eqid | ⊢ ( norm ‘ 𝑇 )  =  ( norm ‘ 𝑇 ) | 
						
							| 5 | 1 2 3 4 | nmofval | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp )  →  𝑁  =  ( 𝑓  ∈  ( 𝑆  GrpHom  𝑇 )  ↦  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝑆 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) } ,  ℝ* ,   <  ) ) ) | 
						
							| 6 |  | ssrab2 | ⊢ { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝑆 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) }  ⊆  ( 0 [,) +∞ ) | 
						
							| 7 |  | icossxr | ⊢ ( 0 [,) +∞ )  ⊆  ℝ* | 
						
							| 8 | 6 7 | sstri | ⊢ { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝑆 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) }  ⊆  ℝ* | 
						
							| 9 |  | infxrcl | ⊢ ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝑆 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) }  ⊆  ℝ*  →  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝑆 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) } ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 10 | 8 9 | mp1i | ⊢ ( ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp )  ∧  𝑓  ∈  ( 𝑆  GrpHom  𝑇 ) )  →  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝑆 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) } ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 11 | 5 10 | fmpt3d | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp )  →  𝑁 : ( 𝑆  GrpHom  𝑇 ) ⟶ ℝ* ) |