| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-nmo | ⊢  normOp   =  ( 𝑠  ∈  NrmGrp ,  𝑡  ∈  NrmGrp  ↦  ( 𝑓  ∈  ( 𝑠  GrpHom  𝑡 )  ↦  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } ,  ℝ* ,   <  ) ) ) | 
						
							| 2 |  | eqid | ⊢ ( 𝑓  ∈  ( 𝑠  GrpHom  𝑡 )  ↦  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } ,  ℝ* ,   <  ) )  =  ( 𝑓  ∈  ( 𝑠  GrpHom  𝑡 )  ↦  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 3 |  | ssrab2 | ⊢ { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) }  ⊆  ( 0 [,) +∞ ) | 
						
							| 4 |  | icossxr | ⊢ ( 0 [,) +∞ )  ⊆  ℝ* | 
						
							| 5 | 3 4 | sstri | ⊢ { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) }  ⊆  ℝ* | 
						
							| 6 |  | infxrcl | ⊢ ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) }  ⊆  ℝ*  →  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 7 | 5 6 | mp1i | ⊢ ( 𝑓  ∈  ( 𝑠  GrpHom  𝑡 )  →  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 8 | 2 7 | fmpti | ⊢ ( 𝑓  ∈  ( 𝑠  GrpHom  𝑡 )  ↦  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } ,  ℝ* ,   <  ) ) : ( 𝑠  GrpHom  𝑡 ) ⟶ ℝ* | 
						
							| 9 |  | ovex | ⊢ ( 𝑠  GrpHom  𝑡 )  ∈  V | 
						
							| 10 |  | xrex | ⊢ ℝ*  ∈  V | 
						
							| 11 |  | fex2 | ⊢ ( ( ( 𝑓  ∈  ( 𝑠  GrpHom  𝑡 )  ↦  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } ,  ℝ* ,   <  ) ) : ( 𝑠  GrpHom  𝑡 ) ⟶ ℝ*  ∧  ( 𝑠  GrpHom  𝑡 )  ∈  V  ∧  ℝ*  ∈  V )  →  ( 𝑓  ∈  ( 𝑠  GrpHom  𝑡 )  ↦  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } ,  ℝ* ,   <  ) )  ∈  V ) | 
						
							| 12 | 8 9 10 11 | mp3an | ⊢ ( 𝑓  ∈  ( 𝑠  GrpHom  𝑡 )  ↦  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } ,  ℝ* ,   <  ) )  ∈  V | 
						
							| 13 | 1 12 | fnmpoi | ⊢  normOp   Fn  ( NrmGrp  ×  NrmGrp ) |