Step |
Hyp |
Ref |
Expression |
1 |
|
nmofval.1 |
⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) |
2 |
|
nmofval.2 |
⊢ 𝑉 = ( Base ‘ 𝑆 ) |
3 |
|
nmofval.3 |
⊢ 𝐿 = ( norm ‘ 𝑆 ) |
4 |
|
nmofval.4 |
⊢ 𝑀 = ( norm ‘ 𝑇 ) |
5 |
|
oveq12 |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( 𝑠 GrpHom 𝑡 ) = ( 𝑆 GrpHom 𝑇 ) ) |
6 |
|
simpl |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → 𝑠 = 𝑆 ) |
7 |
6
|
fveq2d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) ) |
8 |
7 2
|
eqtr4di |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( Base ‘ 𝑠 ) = 𝑉 ) |
9 |
|
simpr |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → 𝑡 = 𝑇 ) |
10 |
9
|
fveq2d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( norm ‘ 𝑡 ) = ( norm ‘ 𝑇 ) ) |
11 |
10 4
|
eqtr4di |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( norm ‘ 𝑡 ) = 𝑀 ) |
12 |
11
|
fveq1d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
13 |
6
|
fveq2d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( norm ‘ 𝑠 ) = ( norm ‘ 𝑆 ) ) |
14 |
13 3
|
eqtr4di |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( norm ‘ 𝑠 ) = 𝐿 ) |
15 |
14
|
fveq1d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) = ( 𝐿 ‘ 𝑥 ) ) |
16 |
15
|
oveq2d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( 𝑟 · ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) = ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) ) |
17 |
12 16
|
breq12d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) ↔ ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) ) ) |
18 |
8 17
|
raleqbidv |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) ) ) |
19 |
18
|
rabbidv |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } = { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } ) |
20 |
19
|
infeq1d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } , ℝ* , < ) = inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) |
21 |
5 20
|
mpteq12dv |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( 𝑓 ∈ ( 𝑠 GrpHom 𝑡 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } , ℝ* , < ) ) = ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) ) |
22 |
|
df-nmo |
⊢ normOp = ( 𝑠 ∈ NrmGrp , 𝑡 ∈ NrmGrp ↦ ( 𝑓 ∈ ( 𝑠 GrpHom 𝑡 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } , ℝ* , < ) ) ) |
23 |
|
eqid |
⊢ ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) = ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) |
24 |
|
ssrab2 |
⊢ { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } ⊆ ( 0 [,) +∞ ) |
25 |
|
icossxr |
⊢ ( 0 [,) +∞ ) ⊆ ℝ* |
26 |
24 25
|
sstri |
⊢ { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } ⊆ ℝ* |
27 |
|
infxrcl |
⊢ ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } ⊆ ℝ* → inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ∈ ℝ* ) |
28 |
26 27
|
mp1i |
⊢ ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) → inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ∈ ℝ* ) |
29 |
23 28
|
fmpti |
⊢ ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) : ( 𝑆 GrpHom 𝑇 ) ⟶ ℝ* |
30 |
|
ovex |
⊢ ( 𝑆 GrpHom 𝑇 ) ∈ V |
31 |
|
xrex |
⊢ ℝ* ∈ V |
32 |
|
fex2 |
⊢ ( ( ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) : ( 𝑆 GrpHom 𝑇 ) ⟶ ℝ* ∧ ( 𝑆 GrpHom 𝑇 ) ∈ V ∧ ℝ* ∈ V ) → ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) ∈ V ) |
33 |
29 30 31 32
|
mp3an |
⊢ ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) ∈ V |
34 |
21 22 33
|
ovmpoa |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → ( 𝑆 normOp 𝑇 ) = ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) ) |
35 |
1 34
|
syl5eq |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → 𝑁 = ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) ) |