| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmofval.1 | ⊢ 𝑁  =  ( 𝑆  normOp  𝑇 ) | 
						
							| 2 |  | elrege0 | ⊢ ( 𝑟  ∈  ( 0 [,) +∞ )  ↔  ( 𝑟  ∈  ℝ  ∧  0  ≤  𝑟 ) ) | 
						
							| 3 | 2 | simprbi | ⊢ ( 𝑟  ∈  ( 0 [,) +∞ )  →  0  ≤  𝑟 ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  ∧  𝑟  ∈  ( 0 [,) +∞ ) )  →  0  ≤  𝑟 ) | 
						
							| 5 | 4 | a1d | ⊢ ( ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  ∧  𝑟  ∈  ( 0 [,) +∞ ) )  →  ( ∀ 𝑥  ∈  ( Base ‘ 𝑆 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) )  →  0  ≤  𝑟 ) ) | 
						
							| 6 | 5 | ralrimiva | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  →  ∀ 𝑟  ∈  ( 0 [,) +∞ ) ( ∀ 𝑥  ∈  ( Base ‘ 𝑆 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) )  →  0  ≤  𝑟 ) ) | 
						
							| 7 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 9 |  | eqid | ⊢ ( norm ‘ 𝑆 )  =  ( norm ‘ 𝑆 ) | 
						
							| 10 |  | eqid | ⊢ ( norm ‘ 𝑇 )  =  ( norm ‘ 𝑇 ) | 
						
							| 11 | 1 8 9 10 | nmogelb | ⊢ ( ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  ∧  0  ∈  ℝ* )  →  ( 0  ≤  ( 𝑁 ‘ 𝐹 )  ↔  ∀ 𝑟  ∈  ( 0 [,) +∞ ) ( ∀ 𝑥  ∈  ( Base ‘ 𝑆 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) )  →  0  ≤  𝑟 ) ) ) | 
						
							| 12 | 7 11 | mpan2 | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  →  ( 0  ≤  ( 𝑁 ‘ 𝐹 )  ↔  ∀ 𝑟  ∈  ( 0 [,) +∞ ) ( ∀ 𝑥  ∈  ( Base ‘ 𝑆 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) )  →  0  ≤  𝑟 ) ) ) | 
						
							| 13 | 6 12 | mpbird | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  →  0  ≤  ( 𝑁 ‘ 𝐹 ) ) |