| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmofval.1 | ⊢ 𝑁  =  ( 𝑆  normOp  𝑇 ) | 
						
							| 2 |  | nmofval.2 | ⊢ 𝑉  =  ( Base ‘ 𝑆 ) | 
						
							| 3 |  | nmofval.3 | ⊢ 𝐿  =  ( norm ‘ 𝑆 ) | 
						
							| 4 |  | nmofval.4 | ⊢ 𝑀  =  ( norm ‘ 𝑇 ) | 
						
							| 5 | 1 2 3 4 | nmoval | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  →  ( 𝑁 ‘ 𝐹 )  =  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 6 | 5 | breq2d | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  →  ( 𝐴  ≤  ( 𝑁 ‘ 𝐹 )  ↔  𝐴  ≤  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) } ,  ℝ* ,   <  ) ) ) | 
						
							| 7 |  | ssrab2 | ⊢ { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) }  ⊆  ( 0 [,) +∞ ) | 
						
							| 8 |  | icossxr | ⊢ ( 0 [,) +∞ )  ⊆  ℝ* | 
						
							| 9 | 7 8 | sstri | ⊢ { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) }  ⊆  ℝ* | 
						
							| 10 |  | infxrgelb | ⊢ ( ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) }  ⊆  ℝ*  ∧  𝐴  ∈  ℝ* )  →  ( 𝐴  ≤  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) } ,  ℝ* ,   <  )  ↔  ∀ 𝑠  ∈  { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) } 𝐴  ≤  𝑠 ) ) | 
						
							| 11 | 9 10 | mpan | ⊢ ( 𝐴  ∈  ℝ*  →  ( 𝐴  ≤  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) } ,  ℝ* ,   <  )  ↔  ∀ 𝑠  ∈  { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) } 𝐴  ≤  𝑠 ) ) | 
						
							| 12 |  | breq2 | ⊢ ( 𝑠  =  𝑟  →  ( 𝐴  ≤  𝑠  ↔  𝐴  ≤  𝑟 ) ) | 
						
							| 13 | 12 | ralrab2 | ⊢ ( ∀ 𝑠  ∈  { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) } 𝐴  ≤  𝑠  ↔  ∀ 𝑟  ∈  ( 0 [,) +∞ ) ( ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) )  →  𝐴  ≤  𝑟 ) ) | 
						
							| 14 | 11 13 | bitrdi | ⊢ ( 𝐴  ∈  ℝ*  →  ( 𝐴  ≤  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) } ,  ℝ* ,   <  )  ↔  ∀ 𝑟  ∈  ( 0 [,) +∞ ) ( ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) )  →  𝐴  ≤  𝑟 ) ) ) | 
						
							| 15 | 6 14 | sylan9bb | ⊢ ( ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  ∧  𝐴  ∈  ℝ* )  →  ( 𝐴  ≤  ( 𝑁 ‘ 𝐹 )  ↔  ∀ 𝑟  ∈  ( 0 [,) +∞ ) ( ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) )  →  𝐴  ≤  𝑟 ) ) ) |