Metamath Proof Explorer


Theorem nmogelb

Description: Property of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015) (Proof shortened by AV, 26-Sep-2020)

Ref Expression
Hypotheses nmofval.1 𝑁 = ( 𝑆 normOp 𝑇 )
nmofval.2 𝑉 = ( Base ‘ 𝑆 )
nmofval.3 𝐿 = ( norm ‘ 𝑆 )
nmofval.4 𝑀 = ( norm ‘ 𝑇 )
Assertion nmogelb ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝐴 ∈ ℝ* ) → ( 𝐴 ≤ ( 𝑁𝐹 ) ↔ ∀ 𝑟 ∈ ( 0 [,) +∞ ) ( ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) → 𝐴𝑟 ) ) )

Proof

Step Hyp Ref Expression
1 nmofval.1 𝑁 = ( 𝑆 normOp 𝑇 )
2 nmofval.2 𝑉 = ( Base ‘ 𝑆 )
3 nmofval.3 𝐿 = ( norm ‘ 𝑆 )
4 nmofval.4 𝑀 = ( norm ‘ 𝑇 )
5 1 2 3 4 nmoval ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝑁𝐹 ) = inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) } , ℝ* , < ) )
6 5 breq2d ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝐴 ≤ ( 𝑁𝐹 ) ↔ 𝐴 ≤ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) } , ℝ* , < ) ) )
7 ssrab2 { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) } ⊆ ( 0 [,) +∞ )
8 icossxr ( 0 [,) +∞ ) ⊆ ℝ*
9 7 8 sstri { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) } ⊆ ℝ*
10 infxrgelb ( ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) } ⊆ ℝ*𝐴 ∈ ℝ* ) → ( 𝐴 ≤ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) } , ℝ* , < ) ↔ ∀ 𝑠 ∈ { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) } 𝐴𝑠 ) )
11 9 10 mpan ( 𝐴 ∈ ℝ* → ( 𝐴 ≤ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) } , ℝ* , < ) ↔ ∀ 𝑠 ∈ { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) } 𝐴𝑠 ) )
12 breq2 ( 𝑠 = 𝑟 → ( 𝐴𝑠𝐴𝑟 ) )
13 12 ralrab2 ( ∀ 𝑠 ∈ { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) } 𝐴𝑠 ↔ ∀ 𝑟 ∈ ( 0 [,) +∞ ) ( ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) → 𝐴𝑟 ) )
14 11 13 bitrdi ( 𝐴 ∈ ℝ* → ( 𝐴 ≤ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) } , ℝ* , < ) ↔ ∀ 𝑟 ∈ ( 0 [,) +∞ ) ( ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) → 𝐴𝑟 ) ) )
15 6 14 sylan9bb ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝐴 ∈ ℝ* ) → ( 𝐴 ≤ ( 𝑁𝐹 ) ↔ ∀ 𝑟 ∈ ( 0 [,) +∞ ) ( ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝑟 · ( 𝐿𝑥 ) ) → 𝐴𝑟 ) ) )