Step |
Hyp |
Ref |
Expression |
1 |
|
nmoxr.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
nmoxr.2 |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
3 |
|
nmoxr.3 |
⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) |
4 |
1 2 3
|
nmorepnf |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ( 𝑁 ‘ 𝑇 ) ≠ +∞ ) ) |
5 |
|
df-ne |
⊢ ( ( 𝑁 ‘ 𝑇 ) ≠ +∞ ↔ ¬ ( 𝑁 ‘ 𝑇 ) = +∞ ) |
6 |
4 5
|
bitrdi |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ¬ ( 𝑁 ‘ 𝑇 ) = +∞ ) ) |
7 |
|
xor3 |
⊢ ( ¬ ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ( 𝑁 ‘ 𝑇 ) = +∞ ) ↔ ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ¬ ( 𝑁 ‘ 𝑇 ) = +∞ ) ) |
8 |
|
nbior |
⊢ ( ¬ ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ( 𝑁 ‘ 𝑇 ) = +∞ ) → ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ∨ ( 𝑁 ‘ 𝑇 ) = +∞ ) ) |
9 |
7 8
|
sylbir |
⊢ ( ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ¬ ( 𝑁 ‘ 𝑇 ) = +∞ ) → ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ∨ ( 𝑁 ‘ 𝑇 ) = +∞ ) ) |
10 |
|
mnfltxr |
⊢ ( ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ∨ ( 𝑁 ‘ 𝑇 ) = +∞ ) → -∞ < ( 𝑁 ‘ 𝑇 ) ) |
11 |
6 9 10
|
3syl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → -∞ < ( 𝑁 ‘ 𝑇 ) ) |