| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmoxr.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | nmoxr.2 | ⊢ 𝑌  =  ( BaseSet ‘ 𝑊 ) | 
						
							| 3 |  | nmoxr.3 | ⊢ 𝑁  =  ( 𝑈  normOpOLD  𝑊 ) | 
						
							| 4 | 1 2 3 | nmorepnf | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec  ∧  𝑇 : 𝑋 ⟶ 𝑌 )  →  ( ( 𝑁 ‘ 𝑇 )  ∈  ℝ  ↔  ( 𝑁 ‘ 𝑇 )  ≠  +∞ ) ) | 
						
							| 5 |  | df-ne | ⊢ ( ( 𝑁 ‘ 𝑇 )  ≠  +∞  ↔  ¬  ( 𝑁 ‘ 𝑇 )  =  +∞ ) | 
						
							| 6 | 4 5 | bitrdi | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec  ∧  𝑇 : 𝑋 ⟶ 𝑌 )  →  ( ( 𝑁 ‘ 𝑇 )  ∈  ℝ  ↔  ¬  ( 𝑁 ‘ 𝑇 )  =  +∞ ) ) | 
						
							| 7 |  | xor3 | ⊢ ( ¬  ( ( 𝑁 ‘ 𝑇 )  ∈  ℝ  ↔  ( 𝑁 ‘ 𝑇 )  =  +∞ )  ↔  ( ( 𝑁 ‘ 𝑇 )  ∈  ℝ  ↔  ¬  ( 𝑁 ‘ 𝑇 )  =  +∞ ) ) | 
						
							| 8 |  | nbior | ⊢ ( ¬  ( ( 𝑁 ‘ 𝑇 )  ∈  ℝ  ↔  ( 𝑁 ‘ 𝑇 )  =  +∞ )  →  ( ( 𝑁 ‘ 𝑇 )  ∈  ℝ  ∨  ( 𝑁 ‘ 𝑇 )  =  +∞ ) ) | 
						
							| 9 | 7 8 | sylbir | ⊢ ( ( ( 𝑁 ‘ 𝑇 )  ∈  ℝ  ↔  ¬  ( 𝑁 ‘ 𝑇 )  =  +∞ )  →  ( ( 𝑁 ‘ 𝑇 )  ∈  ℝ  ∨  ( 𝑁 ‘ 𝑇 )  =  +∞ ) ) | 
						
							| 10 |  | mnfltxr | ⊢ ( ( ( 𝑁 ‘ 𝑇 )  ∈  ℝ  ∨  ( 𝑁 ‘ 𝑇 )  =  +∞ )  →  -∞  <  ( 𝑁 ‘ 𝑇 ) ) | 
						
							| 11 | 6 9 10 | 3syl | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec  ∧  𝑇 : 𝑋 ⟶ 𝑌 )  →  -∞  <  ( 𝑁 ‘ 𝑇 ) ) |