Step |
Hyp |
Ref |
Expression |
1 |
|
nmofval.1 |
⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) |
2 |
|
nmoi.2 |
⊢ 𝑉 = ( Base ‘ 𝑆 ) |
3 |
|
nmoi.3 |
⊢ 𝐿 = ( norm ‘ 𝑆 ) |
4 |
|
nmoi.4 |
⊢ 𝑀 = ( norm ‘ 𝑇 ) |
5 |
|
2fveq3 |
⊢ ( 𝑋 = ( 0g ‘ 𝑆 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) = ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) ) |
6 |
|
fveq2 |
⊢ ( 𝑋 = ( 0g ‘ 𝑆 ) → ( 𝐿 ‘ 𝑋 ) = ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) ) |
7 |
6
|
oveq2d |
⊢ ( 𝑋 = ( 0g ‘ 𝑆 ) → ( ( 𝑁 ‘ 𝐹 ) · ( 𝐿 ‘ 𝑋 ) ) = ( ( 𝑁 ‘ 𝐹 ) · ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) ) ) |
8 |
5 7
|
breq12d |
⊢ ( 𝑋 = ( 0g ‘ 𝑆 ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) · ( 𝐿 ‘ 𝑋 ) ) ↔ ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) · ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) ) ) ) |
9 |
|
2fveq3 |
⊢ ( 𝑥 = 𝑋 → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
10 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐿 ‘ 𝑥 ) = ( 𝐿 ‘ 𝑋 ) ) |
11 |
10
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) = ( 𝑟 · ( 𝐿 ‘ 𝑋 ) ) ) |
12 |
9 11
|
breq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) ↔ ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑋 ) ) ) ) |
13 |
12
|
rspcv |
⊢ ( 𝑋 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑋 ) ) ) ) |
14 |
13
|
ad3antlr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) ∧ 𝑟 ∈ ( 0 [,) +∞ ) ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑋 ) ) ) ) |
15 |
1
|
isnghm |
⊢ ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ↔ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ) ) |
16 |
15
|
simplbi |
⊢ ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) → ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) ) |
18 |
17
|
simprd |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → 𝑇 ∈ NrmGrp ) |
19 |
15
|
simprbi |
⊢ ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) → ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ) |
21 |
20
|
simpld |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
22 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
23 |
2 22
|
ghmf |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
24 |
21 23
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
25 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝑇 ) ) |
26 |
24 25
|
sylancom |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝑇 ) ) |
27 |
22 4
|
nmcl |
⊢ ( ( 𝑇 ∈ NrmGrp ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝑇 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ℝ ) |
28 |
18 26 27
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ℝ ) |
29 |
28
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ℝ ) |
30 |
29
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) ∧ 𝑟 ∈ ( 0 [,) +∞ ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ℝ ) |
31 |
|
elrege0 |
⊢ ( 𝑟 ∈ ( 0 [,) +∞ ) ↔ ( 𝑟 ∈ ℝ ∧ 0 ≤ 𝑟 ) ) |
32 |
31
|
simplbi |
⊢ ( 𝑟 ∈ ( 0 [,) +∞ ) → 𝑟 ∈ ℝ ) |
33 |
32
|
adantl |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) ∧ 𝑟 ∈ ( 0 [,) +∞ ) ) → 𝑟 ∈ ℝ ) |
34 |
17
|
simpld |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → 𝑆 ∈ NrmGrp ) |
35 |
|
simpr |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) |
36 |
34 35
|
jca |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑆 ∈ NrmGrp ∧ 𝑋 ∈ 𝑉 ) ) |
37 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
38 |
2 3 37
|
nmrpcl |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( 𝐿 ‘ 𝑋 ) ∈ ℝ+ ) |
39 |
38
|
3expa |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( 𝐿 ‘ 𝑋 ) ∈ ℝ+ ) |
40 |
36 39
|
sylan |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( 𝐿 ‘ 𝑋 ) ∈ ℝ+ ) |
41 |
40
|
rpregt0d |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( ( 𝐿 ‘ 𝑋 ) ∈ ℝ ∧ 0 < ( 𝐿 ‘ 𝑋 ) ) ) |
42 |
41
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) ∧ 𝑟 ∈ ( 0 [,) +∞ ) ) → ( ( 𝐿 ‘ 𝑋 ) ∈ ℝ ∧ 0 < ( 𝐿 ‘ 𝑋 ) ) ) |
43 |
|
ledivmul2 |
⊢ ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ ( ( 𝐿 ‘ 𝑋 ) ∈ ℝ ∧ 0 < ( 𝐿 ‘ 𝑋 ) ) ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) / ( 𝐿 ‘ 𝑋 ) ) ≤ 𝑟 ↔ ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑋 ) ) ) ) |
44 |
30 33 42 43
|
syl3anc |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) ∧ 𝑟 ∈ ( 0 [,) +∞ ) ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) / ( 𝐿 ‘ 𝑋 ) ) ≤ 𝑟 ↔ ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑋 ) ) ) ) |
45 |
14 44
|
sylibrd |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) ∧ 𝑟 ∈ ( 0 [,) +∞ ) ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) / ( 𝐿 ‘ 𝑋 ) ) ≤ 𝑟 ) ) |
46 |
45
|
ralrimiva |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ∀ 𝑟 ∈ ( 0 [,) +∞ ) ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) / ( 𝐿 ‘ 𝑋 ) ) ≤ 𝑟 ) ) |
47 |
34
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → 𝑆 ∈ NrmGrp ) |
48 |
18
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → 𝑇 ∈ NrmGrp ) |
49 |
21
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
50 |
29 40
|
rerpdivcld |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) / ( 𝐿 ‘ 𝑋 ) ) ∈ ℝ ) |
51 |
50
|
rexrd |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) / ( 𝐿 ‘ 𝑋 ) ) ∈ ℝ* ) |
52 |
1 2 3 4
|
nmogelb |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) / ( 𝐿 ‘ 𝑋 ) ) ∈ ℝ* ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) / ( 𝐿 ‘ 𝑋 ) ) ≤ ( 𝑁 ‘ 𝐹 ) ↔ ∀ 𝑟 ∈ ( 0 [,) +∞ ) ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) / ( 𝐿 ‘ 𝑋 ) ) ≤ 𝑟 ) ) ) |
53 |
47 48 49 51 52
|
syl31anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) / ( 𝐿 ‘ 𝑋 ) ) ≤ ( 𝑁 ‘ 𝐹 ) ↔ ∀ 𝑟 ∈ ( 0 [,) +∞ ) ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) / ( 𝐿 ‘ 𝑋 ) ) ≤ 𝑟 ) ) ) |
54 |
46 53
|
mpbird |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) / ( 𝐿 ‘ 𝑋 ) ) ≤ ( 𝑁 ‘ 𝐹 ) ) |
55 |
20
|
simprd |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) |
56 |
55
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) |
57 |
29 56 40
|
ledivmul2d |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) / ( 𝐿 ‘ 𝑋 ) ) ≤ ( 𝑁 ‘ 𝐹 ) ↔ ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) · ( 𝐿 ‘ 𝑋 ) ) ) ) |
58 |
54 57
|
mpbid |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) · ( 𝐿 ‘ 𝑋 ) ) ) |
59 |
|
eqid |
⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) |
60 |
37 59
|
ghmid |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
61 |
21 60
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
62 |
61
|
fveq2d |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) = ( 𝑀 ‘ ( 0g ‘ 𝑇 ) ) ) |
63 |
4 59
|
nm0 |
⊢ ( 𝑇 ∈ NrmGrp → ( 𝑀 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) |
64 |
18 63
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑀 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) |
65 |
62 64
|
eqtrd |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) = 0 ) |
66 |
3 37
|
nm0 |
⊢ ( 𝑆 ∈ NrmGrp → ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) = 0 ) |
67 |
34 66
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) = 0 ) |
68 |
|
0re |
⊢ 0 ∈ ℝ |
69 |
67 68
|
eqeltrdi |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) ∈ ℝ ) |
70 |
1
|
nmoge0 |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → 0 ≤ ( 𝑁 ‘ 𝐹 ) ) |
71 |
34 18 21 70
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → 0 ≤ ( 𝑁 ‘ 𝐹 ) ) |
72 |
|
0le0 |
⊢ 0 ≤ 0 |
73 |
72 67
|
breqtrrid |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → 0 ≤ ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) ) |
74 |
55 69 71 73
|
mulge0d |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → 0 ≤ ( ( 𝑁 ‘ 𝐹 ) · ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) ) ) |
75 |
65 74
|
eqbrtrd |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) · ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) ) ) |
76 |
8 58 75
|
pm2.61ne |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) · ( 𝐿 ‘ 𝑋 ) ) ) |