| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmofval.1 | ⊢ 𝑁  =  ( 𝑆  normOp  𝑇 ) | 
						
							| 2 |  | nmofval.2 | ⊢ 𝑉  =  ( Base ‘ 𝑆 ) | 
						
							| 3 |  | nmofval.3 | ⊢ 𝐿  =  ( norm ‘ 𝑆 ) | 
						
							| 4 |  | nmofval.4 | ⊢ 𝑀  =  ( norm ‘ 𝑇 ) | 
						
							| 5 |  | elrege0 | ⊢ ( 𝐴  ∈  ( 0 [,) +∞ )  ↔  ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 ) ) | 
						
							| 6 | 1 2 3 4 | nmoval | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  →  ( 𝑁 ‘ 𝐹 )  =  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 7 |  | ssrab2 | ⊢ { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) }  ⊆  ( 0 [,) +∞ ) | 
						
							| 8 |  | icossxr | ⊢ ( 0 [,) +∞ )  ⊆  ℝ* | 
						
							| 9 | 7 8 | sstri | ⊢ { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) }  ⊆  ℝ* | 
						
							| 10 |  | infxrcl | ⊢ ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) }  ⊆  ℝ*  →  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) } ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 11 | 9 10 | mp1i | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  →  inf ( { 𝑟  ∈  ( 0 [,) +∞ )  ∣  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) ) } ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 12 | 6 11 | eqeltrd | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  →  ( 𝑁 ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 13 | 12 | xrleidd | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  →  ( 𝑁 ‘ 𝐹 )  ≤  ( 𝑁 ‘ 𝐹 ) ) | 
						
							| 14 | 1 2 3 4 | nmogelb | ⊢ ( ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  ∧  ( 𝑁 ‘ 𝐹 )  ∈  ℝ* )  →  ( ( 𝑁 ‘ 𝐹 )  ≤  ( 𝑁 ‘ 𝐹 )  ↔  ∀ 𝑟  ∈  ( 0 [,) +∞ ) ( ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) )  →  ( 𝑁 ‘ 𝐹 )  ≤  𝑟 ) ) ) | 
						
							| 15 | 12 14 | mpdan | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  →  ( ( 𝑁 ‘ 𝐹 )  ≤  ( 𝑁 ‘ 𝐹 )  ↔  ∀ 𝑟  ∈  ( 0 [,) +∞ ) ( ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) )  →  ( 𝑁 ‘ 𝐹 )  ≤  𝑟 ) ) ) | 
						
							| 16 | 13 15 | mpbid | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  →  ∀ 𝑟  ∈  ( 0 [,) +∞ ) ( ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) )  →  ( 𝑁 ‘ 𝐹 )  ≤  𝑟 ) ) | 
						
							| 17 |  | oveq1 | ⊢ ( 𝑟  =  𝐴  →  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) )  =  ( 𝐴  ·  ( 𝐿 ‘ 𝑥 ) ) ) | 
						
							| 18 | 17 | breq2d | ⊢ ( 𝑟  =  𝐴  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) )  ↔  ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘ 𝑥 ) ) ) ) | 
						
							| 19 | 18 | ralbidv | ⊢ ( 𝑟  =  𝐴  →  ( ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) )  ↔  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘ 𝑥 ) ) ) ) | 
						
							| 20 |  | breq2 | ⊢ ( 𝑟  =  𝐴  →  ( ( 𝑁 ‘ 𝐹 )  ≤  𝑟  ↔  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 ) ) | 
						
							| 21 | 19 20 | imbi12d | ⊢ ( 𝑟  =  𝐴  →  ( ( ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) )  →  ( 𝑁 ‘ 𝐹 )  ≤  𝑟 )  ↔  ( ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘ 𝑥 ) )  →  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 ) ) ) | 
						
							| 22 | 21 | rspccv | ⊢ ( ∀ 𝑟  ∈  ( 0 [,) +∞ ) ( ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝑟  ·  ( 𝐿 ‘ 𝑥 ) )  →  ( 𝑁 ‘ 𝐹 )  ≤  𝑟 )  →  ( 𝐴  ∈  ( 0 [,) +∞ )  →  ( ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘ 𝑥 ) )  →  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 ) ) ) | 
						
							| 23 | 16 22 | syl | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  →  ( 𝐴  ∈  ( 0 [,) +∞ )  →  ( ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘ 𝑥 ) )  →  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 ) ) ) | 
						
							| 24 | 5 23 | biimtrrid | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  →  ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘ 𝑥 ) )  →  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 ) ) ) | 
						
							| 25 | 24 | 3impib | ⊢ ( ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  ∧  𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘ 𝑥 ) )  →  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 ) ) |