| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmofval.1 |
⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) |
| 2 |
|
nmofval.2 |
⊢ 𝑉 = ( Base ‘ 𝑆 ) |
| 3 |
|
nmofval.3 |
⊢ 𝐿 = ( norm ‘ 𝑆 ) |
| 4 |
|
nmofval.4 |
⊢ 𝑀 = ( norm ‘ 𝑇 ) |
| 5 |
|
nmolb2d.z |
⊢ 0 = ( 0g ‘ 𝑆 ) |
| 6 |
|
nmolb2d.1 |
⊢ ( 𝜑 → 𝑆 ∈ NrmGrp ) |
| 7 |
|
nmolb2d.2 |
⊢ ( 𝜑 → 𝑇 ∈ NrmGrp ) |
| 8 |
|
nmolb2d.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 9 |
|
nmolb2d.4 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 10 |
|
nmolb2d.5 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
| 11 |
|
nmolb2d.6 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) |
| 12 |
|
2fveq3 |
⊢ ( 𝑥 = 0 → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝐹 ‘ 0 ) ) ) |
| 13 |
|
fveq2 |
⊢ ( 𝑥 = 0 → ( 𝐿 ‘ 𝑥 ) = ( 𝐿 ‘ 0 ) ) |
| 14 |
13
|
oveq2d |
⊢ ( 𝑥 = 0 → ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) = ( 𝐴 · ( 𝐿 ‘ 0 ) ) ) |
| 15 |
12 14
|
breq12d |
⊢ ( 𝑥 = 0 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ↔ ( 𝑀 ‘ ( 𝐹 ‘ 0 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 0 ) ) ) ) |
| 16 |
11
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) ∧ 𝑥 ≠ 0 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) |
| 17 |
|
0le0 |
⊢ 0 ≤ 0 |
| 18 |
9
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 19 |
18
|
mul01d |
⊢ ( 𝜑 → ( 𝐴 · 0 ) = 0 ) |
| 20 |
17 19
|
breqtrrid |
⊢ ( 𝜑 → 0 ≤ ( 𝐴 · 0 ) ) |
| 21 |
|
eqid |
⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) |
| 22 |
5 21
|
ghmid |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑇 ) ) |
| 23 |
8 22
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑇 ) ) |
| 24 |
23
|
fveq2d |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐹 ‘ 0 ) ) = ( 𝑀 ‘ ( 0g ‘ 𝑇 ) ) ) |
| 25 |
4 21
|
nm0 |
⊢ ( 𝑇 ∈ NrmGrp → ( 𝑀 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) |
| 26 |
7 25
|
syl |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) |
| 27 |
24 26
|
eqtrd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐹 ‘ 0 ) ) = 0 ) |
| 28 |
3 5
|
nm0 |
⊢ ( 𝑆 ∈ NrmGrp → ( 𝐿 ‘ 0 ) = 0 ) |
| 29 |
6 28
|
syl |
⊢ ( 𝜑 → ( 𝐿 ‘ 0 ) = 0 ) |
| 30 |
29
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( 𝐿 ‘ 0 ) ) = ( 𝐴 · 0 ) ) |
| 31 |
20 27 30
|
3brtr4d |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐹 ‘ 0 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 0 ) ) ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝑀 ‘ ( 𝐹 ‘ 0 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 0 ) ) ) |
| 33 |
15 16 32
|
pm2.61ne |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) |
| 34 |
33
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) |
| 35 |
1 2 3 4
|
nmolb |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) → ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ) |
| 36 |
6 7 8 9 10 35
|
syl311anc |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) → ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ) |
| 37 |
34 36
|
mpd |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) |