Metamath Proof Explorer


Theorem nmolb2d

Description: Any upper bound on the values of a linear operator at nonzero vectors translates to an upper bound on the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Hypotheses nmofval.1 𝑁 = ( 𝑆 normOp 𝑇 )
nmofval.2 𝑉 = ( Base ‘ 𝑆 )
nmofval.3 𝐿 = ( norm ‘ 𝑆 )
nmofval.4 𝑀 = ( norm ‘ 𝑇 )
nmolb2d.z 0 = ( 0g𝑆 )
nmolb2d.1 ( 𝜑𝑆 ∈ NrmGrp )
nmolb2d.2 ( 𝜑𝑇 ∈ NrmGrp )
nmolb2d.3 ( 𝜑𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) )
nmolb2d.4 ( 𝜑𝐴 ∈ ℝ )
nmolb2d.5 ( 𝜑 → 0 ≤ 𝐴 )
nmolb2d.6 ( ( 𝜑 ∧ ( 𝑥𝑉𝑥0 ) ) → ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝐴 · ( 𝐿𝑥 ) ) )
Assertion nmolb2d ( 𝜑 → ( 𝑁𝐹 ) ≤ 𝐴 )

Proof

Step Hyp Ref Expression
1 nmofval.1 𝑁 = ( 𝑆 normOp 𝑇 )
2 nmofval.2 𝑉 = ( Base ‘ 𝑆 )
3 nmofval.3 𝐿 = ( norm ‘ 𝑆 )
4 nmofval.4 𝑀 = ( norm ‘ 𝑇 )
5 nmolb2d.z 0 = ( 0g𝑆 )
6 nmolb2d.1 ( 𝜑𝑆 ∈ NrmGrp )
7 nmolb2d.2 ( 𝜑𝑇 ∈ NrmGrp )
8 nmolb2d.3 ( 𝜑𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) )
9 nmolb2d.4 ( 𝜑𝐴 ∈ ℝ )
10 nmolb2d.5 ( 𝜑 → 0 ≤ 𝐴 )
11 nmolb2d.6 ( ( 𝜑 ∧ ( 𝑥𝑉𝑥0 ) ) → ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝐴 · ( 𝐿𝑥 ) ) )
12 2fveq3 ( 𝑥 = 0 → ( 𝑀 ‘ ( 𝐹𝑥 ) ) = ( 𝑀 ‘ ( 𝐹0 ) ) )
13 fveq2 ( 𝑥 = 0 → ( 𝐿𝑥 ) = ( 𝐿0 ) )
14 13 oveq2d ( 𝑥 = 0 → ( 𝐴 · ( 𝐿𝑥 ) ) = ( 𝐴 · ( 𝐿0 ) ) )
15 12 14 breq12d ( 𝑥 = 0 → ( ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝐴 · ( 𝐿𝑥 ) ) ↔ ( 𝑀 ‘ ( 𝐹0 ) ) ≤ ( 𝐴 · ( 𝐿0 ) ) ) )
16 11 anassrs ( ( ( 𝜑𝑥𝑉 ) ∧ 𝑥0 ) → ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝐴 · ( 𝐿𝑥 ) ) )
17 0le0 0 ≤ 0
18 9 recnd ( 𝜑𝐴 ∈ ℂ )
19 18 mul01d ( 𝜑 → ( 𝐴 · 0 ) = 0 )
20 17 19 breqtrrid ( 𝜑 → 0 ≤ ( 𝐴 · 0 ) )
21 eqid ( 0g𝑇 ) = ( 0g𝑇 )
22 5 21 ghmid ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹0 ) = ( 0g𝑇 ) )
23 8 22 syl ( 𝜑 → ( 𝐹0 ) = ( 0g𝑇 ) )
24 23 fveq2d ( 𝜑 → ( 𝑀 ‘ ( 𝐹0 ) ) = ( 𝑀 ‘ ( 0g𝑇 ) ) )
25 4 21 nm0 ( 𝑇 ∈ NrmGrp → ( 𝑀 ‘ ( 0g𝑇 ) ) = 0 )
26 7 25 syl ( 𝜑 → ( 𝑀 ‘ ( 0g𝑇 ) ) = 0 )
27 24 26 eqtrd ( 𝜑 → ( 𝑀 ‘ ( 𝐹0 ) ) = 0 )
28 3 5 nm0 ( 𝑆 ∈ NrmGrp → ( 𝐿0 ) = 0 )
29 6 28 syl ( 𝜑 → ( 𝐿0 ) = 0 )
30 29 oveq2d ( 𝜑 → ( 𝐴 · ( 𝐿0 ) ) = ( 𝐴 · 0 ) )
31 20 27 30 3brtr4d ( 𝜑 → ( 𝑀 ‘ ( 𝐹0 ) ) ≤ ( 𝐴 · ( 𝐿0 ) ) )
32 31 adantr ( ( 𝜑𝑥𝑉 ) → ( 𝑀 ‘ ( 𝐹0 ) ) ≤ ( 𝐴 · ( 𝐿0 ) ) )
33 15 16 32 pm2.61ne ( ( 𝜑𝑥𝑉 ) → ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝐴 · ( 𝐿𝑥 ) ) )
34 33 ralrimiva ( 𝜑 → ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝐴 · ( 𝐿𝑥 ) ) )
35 1 2 3 4 nmolb ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝐴 · ( 𝐿𝑥 ) ) → ( 𝑁𝐹 ) ≤ 𝐴 ) )
36 6 7 8 9 10 35 syl311anc ( 𝜑 → ( ∀ 𝑥𝑉 ( 𝑀 ‘ ( 𝐹𝑥 ) ) ≤ ( 𝐴 · ( 𝐿𝑥 ) ) → ( 𝑁𝐹 ) ≤ 𝐴 ) )
37 34 36 mpd ( 𝜑 → ( 𝑁𝐹 ) ≤ 𝐴 )