| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmofval.1 | ⊢ 𝑁  =  ( 𝑆  normOp  𝑇 ) | 
						
							| 2 |  | nmofval.2 | ⊢ 𝑉  =  ( Base ‘ 𝑆 ) | 
						
							| 3 |  | nmofval.3 | ⊢ 𝐿  =  ( norm ‘ 𝑆 ) | 
						
							| 4 |  | nmofval.4 | ⊢ 𝑀  =  ( norm ‘ 𝑇 ) | 
						
							| 5 |  | nmolb2d.z | ⊢  0   =  ( 0g ‘ 𝑆 ) | 
						
							| 6 |  | nmolb2d.1 | ⊢ ( 𝜑  →  𝑆  ∈  NrmGrp ) | 
						
							| 7 |  | nmolb2d.2 | ⊢ ( 𝜑  →  𝑇  ∈  NrmGrp ) | 
						
							| 8 |  | nmolb2d.3 | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) ) | 
						
							| 9 |  | nmolb2d.4 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 10 |  | nmolb2d.5 | ⊢ ( 𝜑  →  0  ≤  𝐴 ) | 
						
							| 11 |  | nmolb2d.6 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑉  ∧  𝑥  ≠   0  ) )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘ 𝑥 ) ) ) | 
						
							| 12 |  | 2fveq3 | ⊢ ( 𝑥  =   0   →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( 𝑀 ‘ ( 𝐹 ‘  0  ) ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑥  =   0   →  ( 𝐿 ‘ 𝑥 )  =  ( 𝐿 ‘  0  ) ) | 
						
							| 14 | 13 | oveq2d | ⊢ ( 𝑥  =   0   →  ( 𝐴  ·  ( 𝐿 ‘ 𝑥 ) )  =  ( 𝐴  ·  ( 𝐿 ‘  0  ) ) ) | 
						
							| 15 | 12 14 | breq12d | ⊢ ( 𝑥  =   0   →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘ 𝑥 ) )  ↔  ( 𝑀 ‘ ( 𝐹 ‘  0  ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘  0  ) ) ) ) | 
						
							| 16 | 11 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  ∧  𝑥  ≠   0  )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘ 𝑥 ) ) ) | 
						
							| 17 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 18 | 9 | recnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 19 | 18 | mul01d | ⊢ ( 𝜑  →  ( 𝐴  ·  0 )  =  0 ) | 
						
							| 20 | 17 19 | breqtrrid | ⊢ ( 𝜑  →  0  ≤  ( 𝐴  ·  0 ) ) | 
						
							| 21 |  | eqid | ⊢ ( 0g ‘ 𝑇 )  =  ( 0g ‘ 𝑇 ) | 
						
							| 22 | 5 21 | ghmid | ⊢ ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  →  ( 𝐹 ‘  0  )  =  ( 0g ‘ 𝑇 ) ) | 
						
							| 23 | 8 22 | syl | ⊢ ( 𝜑  →  ( 𝐹 ‘  0  )  =  ( 0g ‘ 𝑇 ) ) | 
						
							| 24 | 23 | fveq2d | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝐹 ‘  0  ) )  =  ( 𝑀 ‘ ( 0g ‘ 𝑇 ) ) ) | 
						
							| 25 | 4 21 | nm0 | ⊢ ( 𝑇  ∈  NrmGrp  →  ( 𝑀 ‘ ( 0g ‘ 𝑇 ) )  =  0 ) | 
						
							| 26 | 7 25 | syl | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 0g ‘ 𝑇 ) )  =  0 ) | 
						
							| 27 | 24 26 | eqtrd | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝐹 ‘  0  ) )  =  0 ) | 
						
							| 28 | 3 5 | nm0 | ⊢ ( 𝑆  ∈  NrmGrp  →  ( 𝐿 ‘  0  )  =  0 ) | 
						
							| 29 | 6 28 | syl | ⊢ ( 𝜑  →  ( 𝐿 ‘  0  )  =  0 ) | 
						
							| 30 | 29 | oveq2d | ⊢ ( 𝜑  →  ( 𝐴  ·  ( 𝐿 ‘  0  ) )  =  ( 𝐴  ·  0 ) ) | 
						
							| 31 | 20 27 30 | 3brtr4d | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝐹 ‘  0  ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘  0  ) ) ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  ( 𝑀 ‘ ( 𝐹 ‘  0  ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘  0  ) ) ) | 
						
							| 33 | 15 16 32 | pm2.61ne | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘ 𝑥 ) ) ) | 
						
							| 34 | 33 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘ 𝑥 ) ) ) | 
						
							| 35 | 1 2 3 4 | nmolb | ⊢ ( ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  ∧  𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘ 𝑥 ) )  →  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 ) ) | 
						
							| 36 | 6 7 8 9 10 35 | syl311anc | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘ 𝑥 ) )  →  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 ) ) | 
						
							| 37 | 34 36 | mpd | ⊢ ( 𝜑  →  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 ) |