| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmofval.1 | ⊢ 𝑁  =  ( 𝑆  normOp  𝑇 ) | 
						
							| 2 |  | nmoi.2 | ⊢ 𝑉  =  ( Base ‘ 𝑆 ) | 
						
							| 3 |  | nmoi.3 | ⊢ 𝐿  =  ( norm ‘ 𝑆 ) | 
						
							| 4 |  | nmoi.4 | ⊢ 𝑀  =  ( norm ‘ 𝑇 ) | 
						
							| 5 |  | nmoi2.z | ⊢  0   =  ( 0g ‘ 𝑆 ) | 
						
							| 6 |  | nmoleub.1 | ⊢ ( 𝜑  →  𝑆  ∈  NrmGrp ) | 
						
							| 7 |  | nmoleub.2 | ⊢ ( 𝜑  →  𝑇  ∈  NrmGrp ) | 
						
							| 8 |  | nmoleub.3 | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) ) | 
						
							| 9 |  | nmoleub.4 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 10 |  | nmoleub.5 | ⊢ ( 𝜑  →  0  ≤  𝐴 ) | 
						
							| 11 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  𝑥  ≠   0  ) )  →  𝑇  ∈  NrmGrp ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ 𝑇 )  =  ( Base ‘ 𝑇 ) | 
						
							| 13 | 2 12 | ghmf | ⊢ ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  →  𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 14 | 8 13 | syl | ⊢ ( 𝜑  →  𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 15 | 14 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  𝑥  ≠   0  ) )  →  𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 16 |  | simprl | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  𝑥  ≠   0  ) )  →  𝑥  ∈  𝑉 ) | 
						
							| 17 |  | ffvelcdm | ⊢ ( ( 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 )  ∧  𝑥  ∈  𝑉 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( Base ‘ 𝑇 ) ) | 
						
							| 18 | 15 16 17 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  𝑥  ≠   0  ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( Base ‘ 𝑇 ) ) | 
						
							| 19 | 12 4 | nmcl | ⊢ ( ( 𝑇  ∈  NrmGrp  ∧  ( 𝐹 ‘ 𝑥 )  ∈  ( Base ‘ 𝑇 ) )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 20 | 11 18 19 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  𝑥  ≠   0  ) )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 21 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  →  𝑆  ∈  NrmGrp ) | 
						
							| 22 | 2 3 5 | nmrpcl | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑥  ∈  𝑉  ∧  𝑥  ≠   0  )  →  ( 𝐿 ‘ 𝑥 )  ∈  ℝ+ ) | 
						
							| 23 | 22 | 3expb | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  ( 𝑥  ∈  𝑉  ∧  𝑥  ≠   0  ) )  →  ( 𝐿 ‘ 𝑥 )  ∈  ℝ+ ) | 
						
							| 24 | 21 23 | sylan | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  𝑥  ≠   0  ) )  →  ( 𝐿 ‘ 𝑥 )  ∈  ℝ+ ) | 
						
							| 25 | 20 24 | rerpdivcld | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  𝑥  ≠   0  ) )  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  ( 𝐿 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 26 | 25 | rexrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  𝑥  ≠   0  ) )  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  ( 𝐿 ‘ 𝑥 ) )  ∈  ℝ* ) | 
						
							| 27 | 1 | nmocl | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  →  ( 𝑁 ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 28 | 6 7 8 27 | syl3anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 29 | 28 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  𝑥  ≠   0  ) )  →  ( 𝑁 ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 30 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  𝑥  ≠   0  ) )  →  𝐴  ∈  ℝ* ) | 
						
							| 31 | 6 7 8 | 3jca | ⊢ ( 𝜑  →  ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) ) ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  →  ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) ) ) | 
						
							| 33 | 1 2 3 4 5 | nmoi2 | ⊢ ( ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  ∧  ( 𝑥  ∈  𝑉  ∧  𝑥  ≠   0  ) )  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  ( 𝐿 ‘ 𝑥 ) )  ≤  ( 𝑁 ‘ 𝐹 ) ) | 
						
							| 34 | 32 33 | sylan | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  𝑥  ≠   0  ) )  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  ( 𝐿 ‘ 𝑥 ) )  ≤  ( 𝑁 ‘ 𝐹 ) ) | 
						
							| 35 |  | simplr | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  𝑥  ≠   0  ) )  →  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 ) | 
						
							| 36 | 26 29 30 34 35 | xrletrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  𝑥  ≠   0  ) )  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  ( 𝐿 ‘ 𝑥 ) )  ≤  𝐴 ) | 
						
							| 37 | 36 | expr | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  𝑥  ∈  𝑉 )  →  ( 𝑥  ≠   0   →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  ( 𝐿 ‘ 𝑥 ) )  ≤  𝐴 ) ) | 
						
							| 38 | 37 | ralrimiva | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  →  ∀ 𝑥  ∈  𝑉 ( 𝑥  ≠   0   →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  ( 𝐿 ‘ 𝑥 ) )  ≤  𝐴 ) ) | 
						
							| 39 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 40 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ℝ )  ∧  𝑥  ∈  𝑉 )  ∧  𝑥  =   0  )  →  𝐴  ∈  ℝ ) | 
						
							| 41 | 40 | recnd | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ℝ )  ∧  𝑥  ∈  𝑉 )  ∧  𝑥  =   0  )  →  𝐴  ∈  ℂ ) | 
						
							| 42 | 41 | mul01d | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ℝ )  ∧  𝑥  ∈  𝑉 )  ∧  𝑥  =   0  )  →  ( 𝐴  ·  0 )  =  0 ) | 
						
							| 43 | 39 42 | breqtrrid | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ℝ )  ∧  𝑥  ∈  𝑉 )  ∧  𝑥  =   0  )  →  0  ≤  ( 𝐴  ·  0 ) ) | 
						
							| 44 |  | fveq2 | ⊢ ( 𝑥  =   0   →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘  0  ) ) | 
						
							| 45 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ℝ )  ∧  𝑥  ∈  𝑉 )  →  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) ) | 
						
							| 46 |  | eqid | ⊢ ( 0g ‘ 𝑇 )  =  ( 0g ‘ 𝑇 ) | 
						
							| 47 | 5 46 | ghmid | ⊢ ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  →  ( 𝐹 ‘  0  )  =  ( 0g ‘ 𝑇 ) ) | 
						
							| 48 | 45 47 | syl | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ℝ )  ∧  𝑥  ∈  𝑉 )  →  ( 𝐹 ‘  0  )  =  ( 0g ‘ 𝑇 ) ) | 
						
							| 49 | 44 48 | sylan9eqr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ℝ )  ∧  𝑥  ∈  𝑉 )  ∧  𝑥  =   0  )  →  ( 𝐹 ‘ 𝑥 )  =  ( 0g ‘ 𝑇 ) ) | 
						
							| 50 | 49 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ℝ )  ∧  𝑥  ∈  𝑉 )  ∧  𝑥  =   0  )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( 𝑀 ‘ ( 0g ‘ 𝑇 ) ) ) | 
						
							| 51 | 7 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ℝ )  ∧  𝑥  ∈  𝑉 )  ∧  𝑥  =   0  )  →  𝑇  ∈  NrmGrp ) | 
						
							| 52 | 4 46 | nm0 | ⊢ ( 𝑇  ∈  NrmGrp  →  ( 𝑀 ‘ ( 0g ‘ 𝑇 ) )  =  0 ) | 
						
							| 53 | 51 52 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ℝ )  ∧  𝑥  ∈  𝑉 )  ∧  𝑥  =   0  )  →  ( 𝑀 ‘ ( 0g ‘ 𝑇 ) )  =  0 ) | 
						
							| 54 | 50 53 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ℝ )  ∧  𝑥  ∈  𝑉 )  ∧  𝑥  =   0  )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  =  0 ) | 
						
							| 55 |  | fveq2 | ⊢ ( 𝑥  =   0   →  ( 𝐿 ‘ 𝑥 )  =  ( 𝐿 ‘  0  ) ) | 
						
							| 56 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ℝ )  ∧  𝑥  ∈  𝑉 )  →  𝑆  ∈  NrmGrp ) | 
						
							| 57 | 3 5 | nm0 | ⊢ ( 𝑆  ∈  NrmGrp  →  ( 𝐿 ‘  0  )  =  0 ) | 
						
							| 58 | 56 57 | syl | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ℝ )  ∧  𝑥  ∈  𝑉 )  →  ( 𝐿 ‘  0  )  =  0 ) | 
						
							| 59 | 55 58 | sylan9eqr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ℝ )  ∧  𝑥  ∈  𝑉 )  ∧  𝑥  =   0  )  →  ( 𝐿 ‘ 𝑥 )  =  0 ) | 
						
							| 60 | 59 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ℝ )  ∧  𝑥  ∈  𝑉 )  ∧  𝑥  =   0  )  →  ( 𝐴  ·  ( 𝐿 ‘ 𝑥 ) )  =  ( 𝐴  ·  0 ) ) | 
						
							| 61 | 43 54 60 | 3brtr4d | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ℝ )  ∧  𝑥  ∈  𝑉 )  ∧  𝑥  =   0  )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘ 𝑥 ) ) ) | 
						
							| 62 | 61 | a1d | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ℝ )  ∧  𝑥  ∈  𝑉 )  ∧  𝑥  =   0  )  →  ( ( 𝑥  ≠   0   →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  ( 𝐿 ‘ 𝑥 ) )  ≤  𝐴 )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘ 𝑥 ) ) ) ) | 
						
							| 63 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ℝ )  ∧  𝑥  ∈  𝑉 )  ∧  𝑥  ≠   0  )  →  𝑥  ≠   0  ) | 
						
							| 64 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ℝ )  ∧  𝑥  ∈  𝑉 )  →  𝑇  ∈  NrmGrp ) | 
						
							| 65 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℝ )  →  𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 66 | 65 17 | sylan | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ℝ )  ∧  𝑥  ∈  𝑉 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( Base ‘ 𝑇 ) ) | 
						
							| 67 | 64 66 19 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ℝ )  ∧  𝑥  ∈  𝑉 )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 68 | 67 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ℝ )  ∧  𝑥  ∈  𝑉 )  ∧  𝑥  ≠   0  )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 69 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ℝ )  ∧  𝑥  ∈  𝑉 )  ∧  𝑥  ≠   0  )  →  𝐴  ∈  ℝ ) | 
						
							| 70 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℝ )  →  𝑆  ∈  NrmGrp ) | 
						
							| 71 | 22 | 3expa | ⊢ ( ( ( 𝑆  ∈  NrmGrp  ∧  𝑥  ∈  𝑉 )  ∧  𝑥  ≠   0  )  →  ( 𝐿 ‘ 𝑥 )  ∈  ℝ+ ) | 
						
							| 72 | 70 71 | sylanl1 | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ℝ )  ∧  𝑥  ∈  𝑉 )  ∧  𝑥  ≠   0  )  →  ( 𝐿 ‘ 𝑥 )  ∈  ℝ+ ) | 
						
							| 73 | 68 69 72 | ledivmul2d | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ℝ )  ∧  𝑥  ∈  𝑉 )  ∧  𝑥  ≠   0  )  →  ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  ( 𝐿 ‘ 𝑥 ) )  ≤  𝐴  ↔  ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘ 𝑥 ) ) ) ) | 
						
							| 74 | 73 | biimpd | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ℝ )  ∧  𝑥  ∈  𝑉 )  ∧  𝑥  ≠   0  )  →  ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  ( 𝐿 ‘ 𝑥 ) )  ≤  𝐴  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘ 𝑥 ) ) ) ) | 
						
							| 75 | 63 74 | embantd | ⊢ ( ( ( ( 𝜑  ∧  𝐴  ∈  ℝ )  ∧  𝑥  ∈  𝑉 )  ∧  𝑥  ≠   0  )  →  ( ( 𝑥  ≠   0   →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  ( 𝐿 ‘ 𝑥 ) )  ≤  𝐴 )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘ 𝑥 ) ) ) ) | 
						
							| 76 | 62 75 | pm2.61dane | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ℝ )  ∧  𝑥  ∈  𝑉 )  →  ( ( 𝑥  ≠   0   →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  ( 𝐿 ‘ 𝑥 ) )  ≤  𝐴 )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘ 𝑥 ) ) ) ) | 
						
							| 77 | 76 | ralimdva | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℝ )  →  ( ∀ 𝑥  ∈  𝑉 ( 𝑥  ≠   0   →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  ( 𝐿 ‘ 𝑥 ) )  ≤  𝐴 )  →  ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘ 𝑥 ) ) ) ) | 
						
							| 78 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℝ )  →  𝑇  ∈  NrmGrp ) | 
						
							| 79 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℝ )  →  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) ) | 
						
							| 80 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℝ )  →  𝐴  ∈  ℝ ) | 
						
							| 81 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℝ )  →  0  ≤  𝐴 ) | 
						
							| 82 | 1 2 3 4 | nmolb | ⊢ ( ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  ∧  𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘ 𝑥 ) )  →  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 ) ) | 
						
							| 83 | 70 78 79 80 81 82 | syl311anc | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℝ )  →  ( ∀ 𝑥  ∈  𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘ 𝑥 ) )  →  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 ) ) | 
						
							| 84 | 77 83 | syld | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℝ )  →  ( ∀ 𝑥  ∈  𝑉 ( 𝑥  ≠   0   →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  ( 𝐿 ‘ 𝑥 ) )  ≤  𝐴 )  →  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 ) ) | 
						
							| 85 | 84 | imp | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  ℝ )  ∧  ∀ 𝑥  ∈  𝑉 ( 𝑥  ≠   0   →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  ( 𝐿 ‘ 𝑥 ) )  ≤  𝐴 ) )  →  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 ) | 
						
							| 86 | 85 | an32s | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( 𝑥  ≠   0   →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  ( 𝐿 ‘ 𝑥 ) )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  →  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 ) | 
						
							| 87 | 28 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( 𝑥  ≠   0   →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  ( 𝐿 ‘ 𝑥 ) )  ≤  𝐴 ) )  ∧  𝐴  =  +∞ )  →  ( 𝑁 ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 88 |  | pnfge | ⊢ ( ( 𝑁 ‘ 𝐹 )  ∈  ℝ*  →  ( 𝑁 ‘ 𝐹 )  ≤  +∞ ) | 
						
							| 89 | 87 88 | syl | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( 𝑥  ≠   0   →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  ( 𝐿 ‘ 𝑥 ) )  ≤  𝐴 ) )  ∧  𝐴  =  +∞ )  →  ( 𝑁 ‘ 𝐹 )  ≤  +∞ ) | 
						
							| 90 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( 𝑥  ≠   0   →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  ( 𝐿 ‘ 𝑥 ) )  ≤  𝐴 ) )  ∧  𝐴  =  +∞ )  →  𝐴  =  +∞ ) | 
						
							| 91 | 89 90 | breqtrrd | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( 𝑥  ≠   0   →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  ( 𝐿 ‘ 𝑥 ) )  ≤  𝐴 ) )  ∧  𝐴  =  +∞ )  →  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 ) | 
						
							| 92 |  | ge0nemnf | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  0  ≤  𝐴 )  →  𝐴  ≠  -∞ ) | 
						
							| 93 | 9 10 92 | syl2anc | ⊢ ( 𝜑  →  𝐴  ≠  -∞ ) | 
						
							| 94 | 9 93 | jca | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℝ*  ∧  𝐴  ≠  -∞ ) ) | 
						
							| 95 |  | xrnemnf | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  ≠  -∞ )  ↔  ( 𝐴  ∈  ℝ  ∨  𝐴  =  +∞ ) ) | 
						
							| 96 | 94 95 | sylib | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℝ  ∨  𝐴  =  +∞ ) ) | 
						
							| 97 | 96 | adantr | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( 𝑥  ≠   0   →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  ( 𝐿 ‘ 𝑥 ) )  ≤  𝐴 ) )  →  ( 𝐴  ∈  ℝ  ∨  𝐴  =  +∞ ) ) | 
						
							| 98 | 86 91 97 | mpjaodan | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( 𝑥  ≠   0   →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  ( 𝐿 ‘ 𝑥 ) )  ≤  𝐴 ) )  →  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 ) | 
						
							| 99 | 38 98 | impbida | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ 𝐹 )  ≤  𝐴  ↔  ∀ 𝑥  ∈  𝑉 ( 𝑥  ≠   0   →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  ( 𝐿 ‘ 𝑥 ) )  ≤  𝐴 ) ) ) |