Metamath Proof Explorer


Theorem nmoleub2a

Description: The operator norm is the supremum of the value of a linear operator in the closed unit ball. (Contributed by Mario Carneiro, 19-Oct-2015)

Ref Expression
Hypotheses nmoleub2.n 𝑁 = ( 𝑆 normOp 𝑇 )
nmoleub2.v 𝑉 = ( Base ‘ 𝑆 )
nmoleub2.l 𝐿 = ( norm ‘ 𝑆 )
nmoleub2.m 𝑀 = ( norm ‘ 𝑇 )
nmoleub2.g 𝐺 = ( Scalar ‘ 𝑆 )
nmoleub2.w 𝐾 = ( Base ‘ 𝐺 )
nmoleub2.s ( 𝜑𝑆 ∈ ( NrmMod ∩ ℂMod ) )
nmoleub2.t ( 𝜑𝑇 ∈ ( NrmMod ∩ ℂMod ) )
nmoleub2.f ( 𝜑𝐹 ∈ ( 𝑆 LMHom 𝑇 ) )
nmoleub2.a ( 𝜑𝐴 ∈ ℝ* )
nmoleub2.r ( 𝜑𝑅 ∈ ℝ+ )
nmoleub2a.5 ( 𝜑 → ℚ ⊆ 𝐾 )
Assertion nmoleub2a ( 𝜑 → ( ( 𝑁𝐹 ) ≤ 𝐴 ↔ ∀ 𝑥𝑉 ( ( 𝐿𝑥 ) ≤ 𝑅 → ( ( 𝑀 ‘ ( 𝐹𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 nmoleub2.n 𝑁 = ( 𝑆 normOp 𝑇 )
2 nmoleub2.v 𝑉 = ( Base ‘ 𝑆 )
3 nmoleub2.l 𝐿 = ( norm ‘ 𝑆 )
4 nmoleub2.m 𝑀 = ( norm ‘ 𝑇 )
5 nmoleub2.g 𝐺 = ( Scalar ‘ 𝑆 )
6 nmoleub2.w 𝐾 = ( Base ‘ 𝐺 )
7 nmoleub2.s ( 𝜑𝑆 ∈ ( NrmMod ∩ ℂMod ) )
8 nmoleub2.t ( 𝜑𝑇 ∈ ( NrmMod ∩ ℂMod ) )
9 nmoleub2.f ( 𝜑𝐹 ∈ ( 𝑆 LMHom 𝑇 ) )
10 nmoleub2.a ( 𝜑𝐴 ∈ ℝ* )
11 nmoleub2.r ( 𝜑𝑅 ∈ ℝ+ )
12 nmoleub2a.5 ( 𝜑 → ℚ ⊆ 𝐾 )
13 idd ( ( ( 𝐿𝑥 ) ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( ( 𝐿𝑥 ) ≤ 𝑅 → ( 𝐿𝑥 ) ≤ 𝑅 ) )
14 ltle ( ( ( 𝐿𝑥 ) ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( ( 𝐿𝑥 ) < 𝑅 → ( 𝐿𝑥 ) ≤ 𝑅 ) )
15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 nmoleub2lem2 ( 𝜑 → ( ( 𝑁𝐹 ) ≤ 𝐴 ↔ ∀ 𝑥𝑉 ( ( 𝐿𝑥 ) ≤ 𝑅 → ( ( 𝑀 ‘ ( 𝐹𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) )