Description: The operator norm is the supremum of the value of a linear operator in the open unit ball. (Contributed by Mario Carneiro, 19-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nmoleub2.n | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
nmoleub2.v | ⊢ 𝑉 = ( Base ‘ 𝑆 ) | ||
nmoleub2.l | ⊢ 𝐿 = ( norm ‘ 𝑆 ) | ||
nmoleub2.m | ⊢ 𝑀 = ( norm ‘ 𝑇 ) | ||
nmoleub2.g | ⊢ 𝐺 = ( Scalar ‘ 𝑆 ) | ||
nmoleub2.w | ⊢ 𝐾 = ( Base ‘ 𝐺 ) | ||
nmoleub2.s | ⊢ ( 𝜑 → 𝑆 ∈ ( NrmMod ∩ ℂMod ) ) | ||
nmoleub2.t | ⊢ ( 𝜑 → 𝑇 ∈ ( NrmMod ∩ ℂMod ) ) | ||
nmoleub2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) | ||
nmoleub2.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | ||
nmoleub2.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | ||
nmoleub2a.5 | ⊢ ( 𝜑 → ℚ ⊆ 𝐾 ) | ||
Assertion | nmoleub2b | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) < 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmoleub2.n | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
2 | nmoleub2.v | ⊢ 𝑉 = ( Base ‘ 𝑆 ) | |
3 | nmoleub2.l | ⊢ 𝐿 = ( norm ‘ 𝑆 ) | |
4 | nmoleub2.m | ⊢ 𝑀 = ( norm ‘ 𝑇 ) | |
5 | nmoleub2.g | ⊢ 𝐺 = ( Scalar ‘ 𝑆 ) | |
6 | nmoleub2.w | ⊢ 𝐾 = ( Base ‘ 𝐺 ) | |
7 | nmoleub2.s | ⊢ ( 𝜑 → 𝑆 ∈ ( NrmMod ∩ ℂMod ) ) | |
8 | nmoleub2.t | ⊢ ( 𝜑 → 𝑇 ∈ ( NrmMod ∩ ℂMod ) ) | |
9 | nmoleub2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) | |
10 | nmoleub2.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
11 | nmoleub2.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | |
12 | nmoleub2a.5 | ⊢ ( 𝜑 → ℚ ⊆ 𝐾 ) | |
13 | ltle | ⊢ ( ( ( 𝐿 ‘ 𝑥 ) ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( ( 𝐿 ‘ 𝑥 ) < 𝑅 → ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) | |
14 | idd | ⊢ ( ( ( 𝐿 ‘ 𝑥 ) ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( ( 𝐿 ‘ 𝑥 ) < 𝑅 → ( 𝐿 ‘ 𝑥 ) < 𝑅 ) ) | |
15 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | nmoleub2lem2 | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) < 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ) |