Step |
Hyp |
Ref |
Expression |
1 |
|
nmoleub2.n |
⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) |
2 |
|
nmoleub2.v |
⊢ 𝑉 = ( Base ‘ 𝑆 ) |
3 |
|
nmoleub2.l |
⊢ 𝐿 = ( norm ‘ 𝑆 ) |
4 |
|
nmoleub2.m |
⊢ 𝑀 = ( norm ‘ 𝑇 ) |
5 |
|
nmoleub2.g |
⊢ 𝐺 = ( Scalar ‘ 𝑆 ) |
6 |
|
nmoleub2.w |
⊢ 𝐾 = ( Base ‘ 𝐺 ) |
7 |
|
nmoleub2.s |
⊢ ( 𝜑 → 𝑆 ∈ ( NrmMod ∩ ℂMod ) ) |
8 |
|
nmoleub2.t |
⊢ ( 𝜑 → 𝑇 ∈ ( NrmMod ∩ ℂMod ) ) |
9 |
|
nmoleub2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
10 |
|
nmoleub2.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
11 |
|
nmoleub2.r |
⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) |
12 |
|
nmoleub2a.5 |
⊢ ( 𝜑 → ℚ ⊆ 𝐾 ) |
13 |
|
nmoleub2lem2.6 |
⊢ ( ( ( 𝐿 ‘ 𝑥 ) ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) |
14 |
|
nmoleub2lem2.7 |
⊢ ( ( ( 𝐿 ‘ 𝑥 ) ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( ( 𝐿 ‘ 𝑥 ) < 𝑅 → ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 ) ) |
15 |
|
lmghm |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
16 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
17 |
|
eqid |
⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) |
18 |
16 17
|
ghmid |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
19 |
9 15 18
|
3syl |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
20 |
19
|
fveq2d |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) = ( 𝑀 ‘ ( 0g ‘ 𝑇 ) ) ) |
21 |
8
|
elin1d |
⊢ ( 𝜑 → 𝑇 ∈ NrmMod ) |
22 |
|
nlmngp |
⊢ ( 𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp ) |
23 |
4 17
|
nm0 |
⊢ ( 𝑇 ∈ NrmGrp → ( 𝑀 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) |
24 |
21 22 23
|
3syl |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) |
25 |
20 24
|
eqtrd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) = 0 ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) = 0 ) |
27 |
26
|
oveq1d |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) / 𝑅 ) = ( 0 / 𝑅 ) ) |
28 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → 𝑅 ∈ ℝ+ ) |
29 |
28
|
rpcnd |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → 𝑅 ∈ ℂ ) |
30 |
28
|
rpne0d |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → 𝑅 ≠ 0 ) |
31 |
29 30
|
div0d |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → ( 0 / 𝑅 ) = 0 ) |
32 |
27 31
|
eqtrd |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) / 𝑅 ) = 0 ) |
33 |
7
|
elin1d |
⊢ ( 𝜑 → 𝑆 ∈ NrmMod ) |
34 |
|
nlmngp |
⊢ ( 𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp ) |
35 |
3 16
|
nm0 |
⊢ ( 𝑆 ∈ NrmGrp → ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) = 0 ) |
36 |
33 34 35
|
3syl |
⊢ ( 𝜑 → ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) = 0 ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) = 0 ) |
38 |
28
|
rpgt0d |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → 0 < 𝑅 ) |
39 |
37 38
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) < 𝑅 ) |
40 |
|
fveq2 |
⊢ ( 𝑥 = ( 0g ‘ 𝑆 ) → ( 𝐿 ‘ 𝑥 ) = ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) ) |
41 |
40
|
breq1d |
⊢ ( 𝑥 = ( 0g ‘ 𝑆 ) → ( ( 𝐿 ‘ 𝑥 ) < 𝑅 ↔ ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) < 𝑅 ) ) |
42 |
|
2fveq3 |
⊢ ( 𝑥 = ( 0g ‘ 𝑆 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) ) |
43 |
42
|
oveq1d |
⊢ ( 𝑥 = ( 0g ‘ 𝑆 ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) = ( ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) / 𝑅 ) ) |
44 |
43
|
breq1d |
⊢ ( 𝑥 = ( 0g ‘ 𝑆 ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ↔ ( ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) / 𝑅 ) ≤ 𝐴 ) ) |
45 |
41 44
|
imbi12d |
⊢ ( 𝑥 = ( 0g ‘ 𝑆 ) → ( ( ( 𝐿 ‘ 𝑥 ) < 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ↔ ( ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) < 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) / 𝑅 ) ≤ 𝐴 ) ) ) |
46 |
33 34
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ NrmGrp ) |
47 |
2 3
|
nmcl |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉 ) → ( 𝐿 ‘ 𝑥 ) ∈ ℝ ) |
48 |
46 47
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝐿 ‘ 𝑥 ) ∈ ℝ ) |
49 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑅 ∈ ℝ+ ) |
50 |
49
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑅 ∈ ℝ ) |
51 |
48 50 14
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐿 ‘ 𝑥 ) < 𝑅 → ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 ) ) |
52 |
51
|
imim1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) → ( ( 𝐿 ‘ 𝑥 ) < 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ) |
53 |
52
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) → ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) < 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ) |
54 |
53
|
imp |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) < 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) |
55 |
|
ngpgrp |
⊢ ( 𝑆 ∈ NrmGrp → 𝑆 ∈ Grp ) |
56 |
2 16
|
grpidcl |
⊢ ( 𝑆 ∈ Grp → ( 0g ‘ 𝑆 ) ∈ 𝑉 ) |
57 |
46 55 56
|
3syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) ∈ 𝑉 ) |
58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → ( 0g ‘ 𝑆 ) ∈ 𝑉 ) |
59 |
45 54 58
|
rspcdva |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → ( ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) < 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) / 𝑅 ) ≤ 𝐴 ) ) |
60 |
39 59
|
mpd |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) / 𝑅 ) ≤ 𝐴 ) |
61 |
32 60
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → 0 ≤ 𝐴 ) |
62 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) → 𝜑 ) |
63 |
62 7
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) → 𝑆 ∈ ( NrmMod ∩ ℂMod ) ) |
64 |
62 8
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) → 𝑇 ∈ ( NrmMod ∩ ℂMod ) ) |
65 |
62 9
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
66 |
62 10
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) → 𝐴 ∈ ℝ* ) |
67 |
62 11
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) → 𝑅 ∈ ℝ+ ) |
68 |
62 12
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) → ℚ ⊆ 𝐾 ) |
69 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) |
70 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) → 𝐴 ∈ ℝ ) |
71 |
61
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) → 0 ≤ 𝐴 ) |
72 |
|
simplrl |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) → 𝑦 ∈ 𝑉 ) |
73 |
|
simplrr |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) → 𝑦 ≠ ( 0g ‘ 𝑆 ) ) |
74 |
54
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) < 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) |
75 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( 𝐿 ‘ 𝑥 ) = ( 𝐿 ‘ ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) |
76 |
75
|
breq1d |
⊢ ( 𝑥 = ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( ( 𝐿 ‘ 𝑥 ) < 𝑅 ↔ ( 𝐿 ‘ ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) < 𝑅 ) ) |
77 |
|
2fveq3 |
⊢ ( 𝑥 = ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝐹 ‘ ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) ) |
78 |
77
|
oveq1d |
⊢ ( 𝑥 = ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) = ( ( 𝑀 ‘ ( 𝐹 ‘ ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) / 𝑅 ) ) |
79 |
78
|
breq1d |
⊢ ( 𝑥 = ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ↔ ( ( 𝑀 ‘ ( 𝐹 ‘ ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) / 𝑅 ) ≤ 𝐴 ) ) |
80 |
76 79
|
imbi12d |
⊢ ( 𝑥 = ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( ( ( 𝐿 ‘ 𝑥 ) < 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ↔ ( ( 𝐿 ‘ ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) < 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) / 𝑅 ) ≤ 𝐴 ) ) ) |
81 |
80
|
rspccv |
⊢ ( ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) < 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) → ( ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ 𝑉 → ( ( 𝐿 ‘ ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) < 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) / 𝑅 ) ≤ 𝐴 ) ) ) |
82 |
74 81
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) → ( ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ 𝑉 → ( ( 𝐿 ‘ ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) < 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ ( 𝑧 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) / 𝑅 ) ≤ 𝐴 ) ) ) |
83 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) → ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) |
84 |
1 2 3 4 5 6 63 64 65 66 67 68 69 70 71 72 73 82 83
|
nmoleub2lem3 |
⊢ ¬ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) |
85 |
|
iman |
⊢ ( ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) ↔ ¬ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) ∧ ¬ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) ) |
86 |
84 85
|
mpbir |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) |
87 |
48 50 13
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) |
88 |
1 2 3 4 5 6 7 8 9 10 11 61 86 87
|
nmoleub2lem |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) 𝑂 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ) |