Step |
Hyp |
Ref |
Expression |
1 |
|
nmoleub2.n |
⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) |
2 |
|
nmoleub2.v |
⊢ 𝑉 = ( Base ‘ 𝑆 ) |
3 |
|
nmoleub2.l |
⊢ 𝐿 = ( norm ‘ 𝑆 ) |
4 |
|
nmoleub2.m |
⊢ 𝑀 = ( norm ‘ 𝑇 ) |
5 |
|
nmoleub2.g |
⊢ 𝐺 = ( Scalar ‘ 𝑆 ) |
6 |
|
nmoleub2.w |
⊢ 𝐾 = ( Base ‘ 𝐺 ) |
7 |
|
nmoleub2.s |
⊢ ( 𝜑 → 𝑆 ∈ ( NrmMod ∩ ℂMod ) ) |
8 |
|
nmoleub2.t |
⊢ ( 𝜑 → 𝑇 ∈ ( NrmMod ∩ ℂMod ) ) |
9 |
|
nmoleub2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
10 |
|
nmoleub2.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
11 |
|
nmoleub2.r |
⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) |
12 |
|
nmoleub3.5 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
13 |
|
nmoleub3.6 |
⊢ ( 𝜑 → ℝ ⊆ 𝐾 ) |
14 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → 0 ≤ 𝐴 ) |
15 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
16 |
13
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ℝ ⊆ 𝐾 ) |
17 |
11
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑅 ∈ ℝ+ ) |
18 |
7
|
elin1d |
⊢ ( 𝜑 → 𝑆 ∈ NrmMod ) |
19 |
18
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑆 ∈ NrmMod ) |
20 |
|
nlmngp |
⊢ ( 𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp ) |
21 |
19 20
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑆 ∈ NrmGrp ) |
22 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑦 ∈ 𝑉 ) |
23 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑦 ≠ ( 0g ‘ 𝑆 ) ) |
24 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
25 |
2 3 24
|
nmrpcl |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) → ( 𝐿 ‘ 𝑦 ) ∈ ℝ+ ) |
26 |
21 22 23 25
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝐿 ‘ 𝑦 ) ∈ ℝ+ ) |
27 |
17 26
|
rpdivcld |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ∈ ℝ+ ) |
28 |
27
|
rpred |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ∈ ℝ ) |
29 |
16 28
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ∈ 𝐾 ) |
30 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) |
31 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑇 ) = ( ·𝑠 ‘ 𝑇 ) |
32 |
5 6 2 30 31
|
lmhmlin |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) → ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
33 |
15 29 22 32
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
34 |
33
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) = ( 𝑀 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
35 |
8
|
elin1d |
⊢ ( 𝜑 → 𝑇 ∈ NrmMod ) |
36 |
35
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑇 ∈ NrmMod ) |
37 |
|
eqid |
⊢ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 ) |
38 |
5 37
|
lmhmsca |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( Scalar ‘ 𝑇 ) = 𝐺 ) |
39 |
15 38
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( Scalar ‘ 𝑇 ) = 𝐺 ) |
40 |
39
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( Base ‘ ( Scalar ‘ 𝑇 ) ) = ( Base ‘ 𝐺 ) ) |
41 |
40 6
|
eqtr4di |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( Base ‘ ( Scalar ‘ 𝑇 ) ) = 𝐾 ) |
42 |
29 41
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) |
43 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
44 |
2 43
|
lmhmf |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
45 |
15 44
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
46 |
45 22
|
ffvelrnd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝑇 ) ) |
47 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑇 ) ) = ( Base ‘ ( Scalar ‘ 𝑇 ) ) |
48 |
|
eqid |
⊢ ( norm ‘ ( Scalar ‘ 𝑇 ) ) = ( norm ‘ ( Scalar ‘ 𝑇 ) ) |
49 |
43 4 31 37 47 48
|
nmvs |
⊢ ( ( 𝑇 ∈ NrmMod ∧ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝑇 ) ) → ( 𝑀 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝑇 ) ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) · ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
50 |
36 42 46 49
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑀 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝑇 ) ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) · ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
51 |
39
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( norm ‘ ( Scalar ‘ 𝑇 ) ) = ( norm ‘ 𝐺 ) ) |
52 |
51
|
fveq1d |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ ( Scalar ‘ 𝑇 ) ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) ) |
53 |
7
|
elin2d |
⊢ ( 𝜑 → 𝑆 ∈ ℂMod ) |
54 |
53
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑆 ∈ ℂMod ) |
55 |
5 6
|
clmabs |
⊢ ( ( 𝑆 ∈ ℂMod ∧ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ∈ 𝐾 ) → ( abs ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) ) |
56 |
54 29 55
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( abs ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) ) |
57 |
27
|
rpge0d |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 0 ≤ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) |
58 |
28 57
|
absidd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( abs ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) = ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) |
59 |
56 58
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ 𝐺 ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) = ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) |
60 |
52 59
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ ( Scalar ‘ 𝑇 ) ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) = ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) |
61 |
60
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( ( norm ‘ ( Scalar ‘ 𝑇 ) ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) · ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) · ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
62 |
34 50 61
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) · ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
63 |
62
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) / 𝑅 ) = ( ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) · ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ) / 𝑅 ) ) |
64 |
27
|
rpcnd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ∈ ℂ ) |
65 |
|
nlmngp |
⊢ ( 𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp ) |
66 |
36 65
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑇 ∈ NrmGrp ) |
67 |
43 4
|
nmcl |
⊢ ( ( 𝑇 ∈ NrmGrp ∧ ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝑇 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) |
68 |
66 46 67
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) |
69 |
68
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ ℂ ) |
70 |
17
|
rpcnd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑅 ∈ ℂ ) |
71 |
17
|
rpne0d |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑅 ≠ 0 ) |
72 |
64 69 70 71
|
divassd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) · ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ) / 𝑅 ) = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) · ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) / 𝑅 ) ) ) |
73 |
26
|
rpcnd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝐿 ‘ 𝑦 ) ∈ ℂ ) |
74 |
26
|
rpne0d |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝐿 ‘ 𝑦 ) ≠ 0 ) |
75 |
69 70 73 71 74
|
dmdcand |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) · ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) / 𝑅 ) ) = ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) / ( 𝐿 ‘ 𝑦 ) ) ) |
76 |
63 72 75
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) / 𝑅 ) = ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) / ( 𝐿 ‘ 𝑦 ) ) ) |
77 |
|
eqid |
⊢ ( norm ‘ 𝐺 ) = ( norm ‘ 𝐺 ) |
78 |
2 3 30 5 6 77
|
nmvs |
⊢ ( ( 𝑆 ∈ NrmMod ∧ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) → ( 𝐿 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( ( ( norm ‘ 𝐺 ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) · ( 𝐿 ‘ 𝑦 ) ) ) |
79 |
19 29 22 78
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝐿 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( ( ( norm ‘ 𝐺 ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) · ( 𝐿 ‘ 𝑦 ) ) ) |
80 |
59
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( ( norm ‘ 𝐺 ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) · ( 𝐿 ‘ 𝑦 ) ) = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) · ( 𝐿 ‘ 𝑦 ) ) ) |
81 |
70 73 74
|
divcan1d |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) · ( 𝐿 ‘ 𝑦 ) ) = 𝑅 ) |
82 |
79 80 81
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝐿 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = 𝑅 ) |
83 |
|
fveqeq2 |
⊢ ( 𝑥 = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( ( 𝐿 ‘ 𝑥 ) = 𝑅 ↔ ( 𝐿 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = 𝑅 ) ) |
84 |
|
2fveq3 |
⊢ ( 𝑥 = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) ) |
85 |
84
|
oveq1d |
⊢ ( 𝑥 = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) = ( ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) / 𝑅 ) ) |
86 |
85
|
breq1d |
⊢ ( 𝑥 = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ↔ ( ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) / 𝑅 ) ≤ 𝐴 ) ) |
87 |
83 86
|
imbi12d |
⊢ ( 𝑥 = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ↔ ( ( 𝐿 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) / 𝑅 ) ≤ 𝐴 ) ) ) |
88 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) |
89 |
2 5 30 6
|
clmvscl |
⊢ ( ( 𝑆 ∈ ℂMod ∧ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) → ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ 𝑉 ) |
90 |
54 29 22 89
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ 𝑉 ) |
91 |
87 88 90
|
rspcdva |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝐿 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) / 𝑅 ) ≤ 𝐴 ) ) |
92 |
82 91
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) / 𝑅 ) ≤ 𝐴 ) |
93 |
76 92
|
eqbrtrrd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) / ( 𝐿 ‘ 𝑦 ) ) ≤ 𝐴 ) |
94 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝐴 ∈ ℝ ) |
95 |
68 94 26
|
ledivmul2d |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) / ( 𝐿 ‘ 𝑦 ) ) ≤ 𝐴 ↔ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) ) |
96 |
93 95
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) |
97 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑅 ∈ ℝ+ ) |
98 |
97
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑅 ∈ ℝ ) |
99 |
98
|
leidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑅 ≤ 𝑅 ) |
100 |
|
breq1 |
⊢ ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ↔ 𝑅 ≤ 𝑅 ) ) |
101 |
99 100
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) |
102 |
1 2 3 4 5 6 7 8 9 10 11 14 96 101
|
nmoleub2lem |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ) |