Step |
Hyp |
Ref |
Expression |
1 |
|
nmoo0.3 |
⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) |
2 |
|
nmoo0.0 |
⊢ 𝑍 = ( 𝑈 0op 𝑊 ) |
3 |
|
eqid |
⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) |
4 |
|
eqid |
⊢ ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 ) |
5 |
3 4 2
|
0oo |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝑍 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ) |
6 |
|
eqid |
⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) |
7 |
|
eqid |
⊢ ( normCV ‘ 𝑊 ) = ( normCV ‘ 𝑊 ) |
8 |
3 4 6 7 1
|
nmooval |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑍 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ) → ( 𝑁 ‘ 𝑍 ) = sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑍 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
9 |
5 8
|
mpd3an3 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑁 ‘ 𝑍 ) = sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑍 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
10 |
|
df-sn |
⊢ { 0 } = { 𝑥 ∣ 𝑥 = 0 } |
11 |
|
eqid |
⊢ ( 0vec ‘ 𝑈 ) = ( 0vec ‘ 𝑈 ) |
12 |
3 11
|
nvzcl |
⊢ ( 𝑈 ∈ NrmCVec → ( 0vec ‘ 𝑈 ) ∈ ( BaseSet ‘ 𝑈 ) ) |
13 |
11 6
|
nvz0 |
⊢ ( 𝑈 ∈ NrmCVec → ( ( normCV ‘ 𝑈 ) ‘ ( 0vec ‘ 𝑈 ) ) = 0 ) |
14 |
|
0le1 |
⊢ 0 ≤ 1 |
15 |
13 14
|
eqbrtrdi |
⊢ ( 𝑈 ∈ NrmCVec → ( ( normCV ‘ 𝑈 ) ‘ ( 0vec ‘ 𝑈 ) ) ≤ 1 ) |
16 |
|
fveq2 |
⊢ ( 𝑧 = ( 0vec ‘ 𝑈 ) → ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) = ( ( normCV ‘ 𝑈 ) ‘ ( 0vec ‘ 𝑈 ) ) ) |
17 |
16
|
breq1d |
⊢ ( 𝑧 = ( 0vec ‘ 𝑈 ) → ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ↔ ( ( normCV ‘ 𝑈 ) ‘ ( 0vec ‘ 𝑈 ) ) ≤ 1 ) ) |
18 |
17
|
rspcev |
⊢ ( ( ( 0vec ‘ 𝑈 ) ∈ ( BaseSet ‘ 𝑈 ) ∧ ( ( normCV ‘ 𝑈 ) ‘ ( 0vec ‘ 𝑈 ) ) ≤ 1 ) → ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ) |
19 |
12 15 18
|
syl2anc |
⊢ ( 𝑈 ∈ NrmCVec → ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ) |
20 |
19
|
biantrurd |
⊢ ( 𝑈 ∈ NrmCVec → ( 𝑥 = 0 ↔ ( ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = 0 ) ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑥 = 0 ↔ ( ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = 0 ) ) ) |
22 |
|
eqid |
⊢ ( 0vec ‘ 𝑊 ) = ( 0vec ‘ 𝑊 ) |
23 |
3 22 2
|
0oval |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑍 ‘ 𝑧 ) = ( 0vec ‘ 𝑊 ) ) |
24 |
23
|
3expa |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑍 ‘ 𝑧 ) = ( 0vec ‘ 𝑊 ) ) |
25 |
24
|
fveq2d |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑍 ‘ 𝑧 ) ) = ( ( normCV ‘ 𝑊 ) ‘ ( 0vec ‘ 𝑊 ) ) ) |
26 |
22 7
|
nvz0 |
⊢ ( 𝑊 ∈ NrmCVec → ( ( normCV ‘ 𝑊 ) ‘ ( 0vec ‘ 𝑊 ) ) = 0 ) |
27 |
26
|
ad2antlr |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( normCV ‘ 𝑊 ) ‘ ( 0vec ‘ 𝑊 ) ) = 0 ) |
28 |
25 27
|
eqtrd |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑍 ‘ 𝑧 ) ) = 0 ) |
29 |
28
|
eqeq2d |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑍 ‘ 𝑧 ) ) ↔ 𝑥 = 0 ) ) |
30 |
29
|
anbi2d |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑍 ‘ 𝑧 ) ) ) ↔ ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = 0 ) ) ) |
31 |
30
|
rexbidva |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑍 ‘ 𝑧 ) ) ) ↔ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = 0 ) ) ) |
32 |
|
r19.41v |
⊢ ( ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = 0 ) ↔ ( ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = 0 ) ) |
33 |
31 32
|
bitr2di |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( ( ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = 0 ) ↔ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑍 ‘ 𝑧 ) ) ) ) ) |
34 |
21 33
|
bitrd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑥 = 0 ↔ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑍 ‘ 𝑧 ) ) ) ) ) |
35 |
34
|
abbidv |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → { 𝑥 ∣ 𝑥 = 0 } = { 𝑥 ∣ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑍 ‘ 𝑧 ) ) ) } ) |
36 |
10 35
|
eqtr2id |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → { 𝑥 ∣ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑍 ‘ 𝑧 ) ) ) } = { 0 } ) |
37 |
36
|
supeq1d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑍 ‘ 𝑧 ) ) ) } , ℝ* , < ) = sup ( { 0 } , ℝ* , < ) ) |
38 |
9 37
|
eqtrd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑁 ‘ 𝑍 ) = sup ( { 0 } , ℝ* , < ) ) |
39 |
|
xrltso |
⊢ < Or ℝ* |
40 |
|
0xr |
⊢ 0 ∈ ℝ* |
41 |
|
supsn |
⊢ ( ( < Or ℝ* ∧ 0 ∈ ℝ* ) → sup ( { 0 } , ℝ* , < ) = 0 ) |
42 |
39 40 41
|
mp2an |
⊢ sup ( { 0 } , ℝ* , < ) = 0 |
43 |
38 42
|
eqtrdi |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑁 ‘ 𝑍 ) = 0 ) |