Step |
Hyp |
Ref |
Expression |
1 |
|
nmoofval.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
nmoofval.2 |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
3 |
|
nmoofval.3 |
⊢ 𝐿 = ( normCV ‘ 𝑈 ) |
4 |
|
nmoofval.4 |
⊢ 𝑀 = ( normCV ‘ 𝑊 ) |
5 |
|
nmoofval.6 |
⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) |
6 |
|
fveq2 |
⊢ ( 𝑢 = 𝑈 → ( BaseSet ‘ 𝑢 ) = ( BaseSet ‘ 𝑈 ) ) |
7 |
6 1
|
eqtr4di |
⊢ ( 𝑢 = 𝑈 → ( BaseSet ‘ 𝑢 ) = 𝑋 ) |
8 |
7
|
oveq2d |
⊢ ( 𝑢 = 𝑈 → ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) = ( ( BaseSet ‘ 𝑤 ) ↑m 𝑋 ) ) |
9 |
|
fveq2 |
⊢ ( 𝑢 = 𝑈 → ( normCV ‘ 𝑢 ) = ( normCV ‘ 𝑈 ) ) |
10 |
9 3
|
eqtr4di |
⊢ ( 𝑢 = 𝑈 → ( normCV ‘ 𝑢 ) = 𝐿 ) |
11 |
10
|
fveq1d |
⊢ ( 𝑢 = 𝑈 → ( ( normCV ‘ 𝑢 ) ‘ 𝑧 ) = ( 𝐿 ‘ 𝑧 ) ) |
12 |
11
|
breq1d |
⊢ ( 𝑢 = 𝑈 → ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 ) ≤ 1 ↔ ( 𝐿 ‘ 𝑧 ) ≤ 1 ) ) |
13 |
12
|
anbi1d |
⊢ ( 𝑢 = 𝑈 → ( ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) ↔ ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) ) ) |
14 |
7 13
|
rexeqbidv |
⊢ ( 𝑢 = 𝑈 → ( ∃ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) ↔ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) ) ) |
15 |
14
|
abbidv |
⊢ ( 𝑢 = 𝑈 → { 𝑥 ∣ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } = { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ) |
16 |
15
|
supeq1d |
⊢ ( 𝑢 = 𝑈 → sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) = sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
17 |
8 16
|
mpteq12dv |
⊢ ( 𝑢 = 𝑈 → ( 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) = ( 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m 𝑋 ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) ) |
18 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( BaseSet ‘ 𝑤 ) = ( BaseSet ‘ 𝑊 ) ) |
19 |
18 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( BaseSet ‘ 𝑤 ) = 𝑌 ) |
20 |
19
|
oveq1d |
⊢ ( 𝑤 = 𝑊 → ( ( BaseSet ‘ 𝑤 ) ↑m 𝑋 ) = ( 𝑌 ↑m 𝑋 ) ) |
21 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( normCV ‘ 𝑤 ) = ( normCV ‘ 𝑊 ) ) |
22 |
21 4
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( normCV ‘ 𝑤 ) = 𝑀 ) |
23 |
22
|
fveq1d |
⊢ ( 𝑤 = 𝑊 → ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) = ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) |
24 |
23
|
eqeq2d |
⊢ ( 𝑤 = 𝑊 → ( 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ↔ 𝑥 = ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) ) |
25 |
24
|
anbi2d |
⊢ ( 𝑤 = 𝑊 → ( ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) ↔ ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) ) ) |
26 |
25
|
rexbidv |
⊢ ( 𝑤 = 𝑊 → ( ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) ↔ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) ) ) |
27 |
26
|
abbidv |
⊢ ( 𝑤 = 𝑊 → { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } = { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ) |
28 |
27
|
supeq1d |
⊢ ( 𝑤 = 𝑊 → sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) = sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
29 |
20 28
|
mpteq12dv |
⊢ ( 𝑤 = 𝑊 → ( 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m 𝑋 ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) = ( 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) ) |
30 |
|
df-nmoo |
⊢ normOpOLD = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ ( 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) ) |
31 |
|
ovex |
⊢ ( 𝑌 ↑m 𝑋 ) ∈ V |
32 |
31
|
mptex |
⊢ ( 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) ∈ V |
33 |
17 29 30 32
|
ovmpo |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑈 normOpOLD 𝑊 ) = ( 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) ) |
34 |
5 33
|
syl5eq |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝑁 = ( 𝑡 ∈ ( 𝑌 ↑m 𝑋 ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( 𝐿 ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) ) |