| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							nmoofval.1 | 
							⊢ 𝑋  =  ( BaseSet ‘ 𝑈 )  | 
						
						
							| 2 | 
							
								
							 | 
							nmoofval.2 | 
							⊢ 𝑌  =  ( BaseSet ‘ 𝑊 )  | 
						
						
							| 3 | 
							
								
							 | 
							nmoofval.3 | 
							⊢ 𝐿  =  ( normCV ‘ 𝑈 )  | 
						
						
							| 4 | 
							
								
							 | 
							nmoofval.4 | 
							⊢ 𝑀  =  ( normCV ‘ 𝑊 )  | 
						
						
							| 5 | 
							
								
							 | 
							nmoofval.6 | 
							⊢ 𝑁  =  ( 𝑈  normOpOLD  𝑊 )  | 
						
						
							| 6 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑢  =  𝑈  →  ( BaseSet ‘ 𝑢 )  =  ( BaseSet ‘ 𝑈 ) )  | 
						
						
							| 7 | 
							
								6 1
							 | 
							eqtr4di | 
							⊢ ( 𝑢  =  𝑈  →  ( BaseSet ‘ 𝑢 )  =  𝑋 )  | 
						
						
							| 8 | 
							
								7
							 | 
							oveq2d | 
							⊢ ( 𝑢  =  𝑈  →  ( ( BaseSet ‘ 𝑤 )  ↑m  ( BaseSet ‘ 𝑢 ) )  =  ( ( BaseSet ‘ 𝑤 )  ↑m  𝑋 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑢  =  𝑈  →  ( normCV ‘ 𝑢 )  =  ( normCV ‘ 𝑈 ) )  | 
						
						
							| 10 | 
							
								9 3
							 | 
							eqtr4di | 
							⊢ ( 𝑢  =  𝑈  →  ( normCV ‘ 𝑢 )  =  𝐿 )  | 
						
						
							| 11 | 
							
								10
							 | 
							fveq1d | 
							⊢ ( 𝑢  =  𝑈  →  ( ( normCV ‘ 𝑢 ) ‘ 𝑧 )  =  ( 𝐿 ‘ 𝑧 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							breq1d | 
							⊢ ( 𝑢  =  𝑈  →  ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 )  ≤  1  ↔  ( 𝐿 ‘ 𝑧 )  ≤  1 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							anbi1d | 
							⊢ ( 𝑢  =  𝑈  →  ( ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) )  ↔  ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) ) )  | 
						
						
							| 14 | 
							
								7 13
							 | 
							rexeqbidv | 
							⊢ ( 𝑢  =  𝑈  →  ( ∃ 𝑧  ∈  ( BaseSet ‘ 𝑢 ) ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) )  ↔  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							abbidv | 
							⊢ ( 𝑢  =  𝑈  →  { 𝑥  ∣  ∃ 𝑧  ∈  ( BaseSet ‘ 𝑢 ) ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) }  =  { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } )  | 
						
						
							| 16 | 
							
								15
							 | 
							supeq1d | 
							⊢ ( 𝑢  =  𝑈  →  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  ( BaseSet ‘ 𝑢 ) ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  )  =  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  ) )  | 
						
						
							| 17 | 
							
								8 16
							 | 
							mpteq12dv | 
							⊢ ( 𝑢  =  𝑈  →  ( 𝑡  ∈  ( ( BaseSet ‘ 𝑤 )  ↑m  ( BaseSet ‘ 𝑢 ) )  ↦  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  ( BaseSet ‘ 𝑢 ) ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  ) )  =  ( 𝑡  ∈  ( ( BaseSet ‘ 𝑤 )  ↑m  𝑋 )  ↦  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑤  =  𝑊  →  ( BaseSet ‘ 𝑤 )  =  ( BaseSet ‘ 𝑊 ) )  | 
						
						
							| 19 | 
							
								18 2
							 | 
							eqtr4di | 
							⊢ ( 𝑤  =  𝑊  →  ( BaseSet ‘ 𝑤 )  =  𝑌 )  | 
						
						
							| 20 | 
							
								19
							 | 
							oveq1d | 
							⊢ ( 𝑤  =  𝑊  →  ( ( BaseSet ‘ 𝑤 )  ↑m  𝑋 )  =  ( 𝑌  ↑m  𝑋 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑤  =  𝑊  →  ( normCV ‘ 𝑤 )  =  ( normCV ‘ 𝑊 ) )  | 
						
						
							| 22 | 
							
								21 4
							 | 
							eqtr4di | 
							⊢ ( 𝑤  =  𝑊  →  ( normCV ‘ 𝑤 )  =  𝑀 )  | 
						
						
							| 23 | 
							
								22
							 | 
							fveq1d | 
							⊢ ( 𝑤  =  𝑊  →  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) )  =  ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							eqeq2d | 
							⊢ ( 𝑤  =  𝑊  →  ( 𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) )  ↔  𝑥  =  ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							anbi2d | 
							⊢ ( 𝑤  =  𝑊  →  ( ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) )  ↔  ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							rexbidv | 
							⊢ ( 𝑤  =  𝑊  →  ( ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) )  ↔  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							abbidv | 
							⊢ ( 𝑤  =  𝑊  →  { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) }  =  { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } )  | 
						
						
							| 28 | 
							
								27
							 | 
							supeq1d | 
							⊢ ( 𝑤  =  𝑊  →  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  )  =  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  ) )  | 
						
						
							| 29 | 
							
								20 28
							 | 
							mpteq12dv | 
							⊢ ( 𝑤  =  𝑊  →  ( 𝑡  ∈  ( ( BaseSet ‘ 𝑤 )  ↑m  𝑋 )  ↦  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  ) )  =  ( 𝑡  ∈  ( 𝑌  ↑m  𝑋 )  ↦  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  ) ) )  | 
						
						
							| 30 | 
							
								
							 | 
							df-nmoo | 
							⊢  normOpOLD   =  ( 𝑢  ∈  NrmCVec ,  𝑤  ∈  NrmCVec  ↦  ( 𝑡  ∈  ( ( BaseSet ‘ 𝑤 )  ↑m  ( BaseSet ‘ 𝑢 ) )  ↦  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  ( BaseSet ‘ 𝑢 ) ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  ) ) )  | 
						
						
							| 31 | 
							
								
							 | 
							ovex | 
							⊢ ( 𝑌  ↑m  𝑋 )  ∈  V  | 
						
						
							| 32 | 
							
								31
							 | 
							mptex | 
							⊢ ( 𝑡  ∈  ( 𝑌  ↑m  𝑋 )  ↦  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  ) )  ∈  V  | 
						
						
							| 33 | 
							
								17 29 30 32
							 | 
							ovmpo | 
							⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec )  →  ( 𝑈  normOpOLD  𝑊 )  =  ( 𝑡  ∈  ( 𝑌  ↑m  𝑋 )  ↦  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  ) ) )  | 
						
						
							| 34 | 
							
								5 33
							 | 
							eqtrid | 
							⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec )  →  𝑁  =  ( 𝑡  ∈  ( 𝑌  ↑m  𝑋 )  ↦  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  ) ) )  |