| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmoofval.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | nmoofval.2 | ⊢ 𝑌  =  ( BaseSet ‘ 𝑊 ) | 
						
							| 3 |  | nmoofval.3 | ⊢ 𝐿  =  ( normCV ‘ 𝑈 ) | 
						
							| 4 |  | nmoofval.4 | ⊢ 𝑀  =  ( normCV ‘ 𝑊 ) | 
						
							| 5 |  | nmoofval.6 | ⊢ 𝑁  =  ( 𝑈  normOpOLD  𝑊 ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑢  =  𝑈  →  ( BaseSet ‘ 𝑢 )  =  ( BaseSet ‘ 𝑈 ) ) | 
						
							| 7 | 6 1 | eqtr4di | ⊢ ( 𝑢  =  𝑈  →  ( BaseSet ‘ 𝑢 )  =  𝑋 ) | 
						
							| 8 | 7 | oveq2d | ⊢ ( 𝑢  =  𝑈  →  ( ( BaseSet ‘ 𝑤 )  ↑m  ( BaseSet ‘ 𝑢 ) )  =  ( ( BaseSet ‘ 𝑤 )  ↑m  𝑋 ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑢  =  𝑈  →  ( normCV ‘ 𝑢 )  =  ( normCV ‘ 𝑈 ) ) | 
						
							| 10 | 9 3 | eqtr4di | ⊢ ( 𝑢  =  𝑈  →  ( normCV ‘ 𝑢 )  =  𝐿 ) | 
						
							| 11 | 10 | fveq1d | ⊢ ( 𝑢  =  𝑈  →  ( ( normCV ‘ 𝑢 ) ‘ 𝑧 )  =  ( 𝐿 ‘ 𝑧 ) ) | 
						
							| 12 | 11 | breq1d | ⊢ ( 𝑢  =  𝑈  →  ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 )  ≤  1  ↔  ( 𝐿 ‘ 𝑧 )  ≤  1 ) ) | 
						
							| 13 | 12 | anbi1d | ⊢ ( 𝑢  =  𝑈  →  ( ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) )  ↔  ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) ) ) | 
						
							| 14 | 7 13 | rexeqbidv | ⊢ ( 𝑢  =  𝑈  →  ( ∃ 𝑧  ∈  ( BaseSet ‘ 𝑢 ) ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) )  ↔  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) ) ) | 
						
							| 15 | 14 | abbidv | ⊢ ( 𝑢  =  𝑈  →  { 𝑥  ∣  ∃ 𝑧  ∈  ( BaseSet ‘ 𝑢 ) ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) }  =  { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ) | 
						
							| 16 | 15 | supeq1d | ⊢ ( 𝑢  =  𝑈  →  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  ( BaseSet ‘ 𝑢 ) ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  )  =  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 17 | 8 16 | mpteq12dv | ⊢ ( 𝑢  =  𝑈  →  ( 𝑡  ∈  ( ( BaseSet ‘ 𝑤 )  ↑m  ( BaseSet ‘ 𝑢 ) )  ↦  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  ( BaseSet ‘ 𝑢 ) ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  ) )  =  ( 𝑡  ∈  ( ( BaseSet ‘ 𝑤 )  ↑m  𝑋 )  ↦  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  ) ) ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( BaseSet ‘ 𝑤 )  =  ( BaseSet ‘ 𝑊 ) ) | 
						
							| 19 | 18 2 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( BaseSet ‘ 𝑤 )  =  𝑌 ) | 
						
							| 20 | 19 | oveq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( BaseSet ‘ 𝑤 )  ↑m  𝑋 )  =  ( 𝑌  ↑m  𝑋 ) ) | 
						
							| 21 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( normCV ‘ 𝑤 )  =  ( normCV ‘ 𝑊 ) ) | 
						
							| 22 | 21 4 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( normCV ‘ 𝑤 )  =  𝑀 ) | 
						
							| 23 | 22 | fveq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) )  =  ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) | 
						
							| 24 | 23 | eqeq2d | ⊢ ( 𝑤  =  𝑊  →  ( 𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) )  ↔  𝑥  =  ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) ) | 
						
							| 25 | 24 | anbi2d | ⊢ ( 𝑤  =  𝑊  →  ( ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) )  ↔  ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) ) ) | 
						
							| 26 | 25 | rexbidv | ⊢ ( 𝑤  =  𝑊  →  ( ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) )  ↔  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) ) ) | 
						
							| 27 | 26 | abbidv | ⊢ ( 𝑤  =  𝑊  →  { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) }  =  { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ) | 
						
							| 28 | 27 | supeq1d | ⊢ ( 𝑤  =  𝑊  →  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  )  =  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 29 | 20 28 | mpteq12dv | ⊢ ( 𝑤  =  𝑊  →  ( 𝑡  ∈  ( ( BaseSet ‘ 𝑤 )  ↑m  𝑋 )  ↦  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  ) )  =  ( 𝑡  ∈  ( 𝑌  ↑m  𝑋 )  ↦  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  ) ) ) | 
						
							| 30 |  | df-nmoo | ⊢  normOpOLD   =  ( 𝑢  ∈  NrmCVec ,  𝑤  ∈  NrmCVec  ↦  ( 𝑡  ∈  ( ( BaseSet ‘ 𝑤 )  ↑m  ( BaseSet ‘ 𝑢 ) )  ↦  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  ( BaseSet ‘ 𝑢 ) ( ( ( normCV ‘ 𝑢 ) ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( ( normCV ‘ 𝑤 ) ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  ) ) ) | 
						
							| 31 |  | ovex | ⊢ ( 𝑌  ↑m  𝑋 )  ∈  V | 
						
							| 32 | 31 | mptex | ⊢ ( 𝑡  ∈  ( 𝑌  ↑m  𝑋 )  ↦  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  ) )  ∈  V | 
						
							| 33 | 17 29 30 32 | ovmpo | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec )  →  ( 𝑈  normOpOLD  𝑊 )  =  ( 𝑡  ∈  ( 𝑌  ↑m  𝑋 )  ↦  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  ) ) ) | 
						
							| 34 | 5 33 | eqtrid | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec )  →  𝑁  =  ( 𝑡  ∈  ( 𝑌  ↑m  𝑋 )  ↦  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  ) ) ) |