Step |
Hyp |
Ref |
Expression |
1 |
|
nmoolb.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
nmoolb.2 |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
3 |
|
nmoolb.l |
⊢ 𝐿 = ( normCV ‘ 𝑈 ) |
4 |
|
nmoolb.m |
⊢ 𝑀 = ( normCV ‘ 𝑊 ) |
5 |
|
nmoolb.3 |
⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) |
6 |
2 4
|
nmosetre |
⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ ) |
7 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
8 |
6 7
|
sstrdi |
⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ* ) |
9 |
8
|
3adant1 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ* ) |
10 |
|
fveq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐿 ‘ 𝑦 ) = ( 𝐿 ‘ 𝐴 ) ) |
11 |
10
|
breq1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ↔ ( 𝐿 ‘ 𝐴 ) ≤ 1 ) ) |
12 |
|
2fveq3 |
⊢ ( 𝑦 = 𝐴 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) ) |
13 |
12
|
eqeq2d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ↔ ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
14 |
11 13
|
anbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ( ( 𝐿 ‘ 𝐴 ) ≤ 1 ∧ ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) ) |
15 |
|
eqid |
⊢ ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) |
16 |
15
|
biantru |
⊢ ( ( 𝐿 ‘ 𝐴 ) ≤ 1 ↔ ( ( 𝐿 ‘ 𝐴 ) ≤ 1 ∧ ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
17 |
14 16
|
bitr4di |
⊢ ( 𝑦 = 𝐴 → ( ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ( 𝐿 ‘ 𝐴 ) ≤ 1 ) ) |
18 |
17
|
rspcev |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( 𝐿 ‘ 𝐴 ) ≤ 1 ) → ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
19 |
|
fvex |
⊢ ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ V |
20 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) → ( 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ↔ ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
21 |
20
|
anbi2d |
⊢ ( 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) → ( ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
22 |
21
|
rexbidv |
⊢ ( 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) → ( ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
23 |
19 22
|
elab |
⊢ ( ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ↔ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
24 |
18 23
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( 𝐿 ‘ 𝐴 ) ≤ 1 ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ) |
25 |
|
supxrub |
⊢ ( ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ* ∧ ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ sup ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
26 |
9 24 25
|
syl2an |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ ( 𝐿 ‘ 𝐴 ) ≤ 1 ) ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ sup ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
27 |
1 2 3 4 5
|
nmooval |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( 𝑁 ‘ 𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
28 |
27
|
adantr |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ ( 𝐿 ‘ 𝐴 ) ≤ 1 ) ) → ( 𝑁 ‘ 𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
29 |
26 28
|
breqtrrd |
⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ ( 𝐿 ‘ 𝐴 ) ≤ 1 ) ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( 𝑁 ‘ 𝑇 ) ) |