| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmoofval.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | nmoofval.2 | ⊢ 𝑌  =  ( BaseSet ‘ 𝑊 ) | 
						
							| 3 |  | nmoofval.3 | ⊢ 𝐿  =  ( normCV ‘ 𝑈 ) | 
						
							| 4 |  | nmoofval.4 | ⊢ 𝑀  =  ( normCV ‘ 𝑊 ) | 
						
							| 5 |  | nmoofval.6 | ⊢ 𝑁  =  ( 𝑈  normOpOLD  𝑊 ) | 
						
							| 6 | 2 | fvexi | ⊢ 𝑌  ∈  V | 
						
							| 7 | 1 | fvexi | ⊢ 𝑋  ∈  V | 
						
							| 8 | 6 7 | elmap | ⊢ ( 𝑇  ∈  ( 𝑌  ↑m  𝑋 )  ↔  𝑇 : 𝑋 ⟶ 𝑌 ) | 
						
							| 9 | 1 2 3 4 5 | nmoofval | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec )  →  𝑁  =  ( 𝑡  ∈  ( 𝑌  ↑m  𝑋 )  ↦  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  ) ) ) | 
						
							| 10 | 9 | fveq1d | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec )  →  ( 𝑁 ‘ 𝑇 )  =  ( ( 𝑡  ∈  ( 𝑌  ↑m  𝑋 )  ↦  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  ) ) ‘ 𝑇 ) ) | 
						
							| 11 |  | fveq1 | ⊢ ( 𝑡  =  𝑇  →  ( 𝑡 ‘ 𝑧 )  =  ( 𝑇 ‘ 𝑧 ) ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( 𝑡  =  𝑇  →  ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) )  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) | 
						
							| 13 | 12 | eqeq2d | ⊢ ( 𝑡  =  𝑇  →  ( 𝑥  =  ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) )  ↔  𝑥  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) | 
						
							| 14 | 13 | anbi2d | ⊢ ( 𝑡  =  𝑇  →  ( ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) )  ↔  ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) ) | 
						
							| 15 | 14 | rexbidv | ⊢ ( 𝑡  =  𝑇  →  ( ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) )  ↔  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) ) ) | 
						
							| 16 | 15 | abbidv | ⊢ ( 𝑡  =  𝑇  →  { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) }  =  { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ) | 
						
							| 17 | 16 | supeq1d | ⊢ ( 𝑡  =  𝑇  →  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  )  =  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 18 |  | eqid | ⊢ ( 𝑡  ∈  ( 𝑌  ↑m  𝑋 )  ↦  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  ) )  =  ( 𝑡  ∈  ( 𝑌  ↑m  𝑋 )  ↦  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 19 |  | xrltso | ⊢  <   Or  ℝ* | 
						
							| 20 | 19 | supex | ⊢ sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  )  ∈  V | 
						
							| 21 | 17 18 20 | fvmpt | ⊢ ( 𝑇  ∈  ( 𝑌  ↑m  𝑋 )  →  ( ( 𝑡  ∈  ( 𝑌  ↑m  𝑋 )  ↦  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑡 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  ) ) ‘ 𝑇 )  =  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 22 | 10 21 | sylan9eq | ⊢ ( ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec )  ∧  𝑇  ∈  ( 𝑌  ↑m  𝑋 ) )  →  ( 𝑁 ‘ 𝑇 )  =  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 23 | 8 22 | sylan2br | ⊢ ( ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec )  ∧  𝑇 : 𝑋 ⟶ 𝑌 )  →  ( 𝑁 ‘ 𝑇 )  =  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 24 | 23 | 3impa | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec  ∧  𝑇 : 𝑋 ⟶ 𝑌 )  →  ( 𝑁 ‘ 𝑇 )  =  sup ( { 𝑥  ∣  ∃ 𝑧  ∈  𝑋 ( ( 𝐿 ‘ 𝑧 )  ≤  1  ∧  𝑥  =  ( 𝑀 ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ,  ℝ* ,   <  ) ) |