Step |
Hyp |
Ref |
Expression |
1 |
|
ho0f |
⊢ 0hop : ℋ ⟶ ℋ |
2 |
|
nmopval |
⊢ ( 0hop : ℋ ⟶ ℋ → ( normop ‘ 0hop ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 0hop ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
3 |
1 2
|
ax-mp |
⊢ ( normop ‘ 0hop ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 0hop ‘ 𝑦 ) ) ) } , ℝ* , < ) |
4 |
|
ho0val |
⊢ ( 𝑦 ∈ ℋ → ( 0hop ‘ 𝑦 ) = 0ℎ ) |
5 |
4
|
fveq2d |
⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ ( 0hop ‘ 𝑦 ) ) = ( normℎ ‘ 0ℎ ) ) |
6 |
|
norm0 |
⊢ ( normℎ ‘ 0ℎ ) = 0 |
7 |
5 6
|
eqtrdi |
⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ ( 0hop ‘ 𝑦 ) ) = 0 ) |
8 |
7
|
eqeq2d |
⊢ ( 𝑦 ∈ ℋ → ( 𝑥 = ( normℎ ‘ ( 0hop ‘ 𝑦 ) ) ↔ 𝑥 = 0 ) ) |
9 |
8
|
anbi2d |
⊢ ( 𝑦 ∈ ℋ → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 0hop ‘ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = 0 ) ) ) |
10 |
9
|
rexbiia |
⊢ ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 0hop ‘ 𝑦 ) ) ) ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = 0 ) ) |
11 |
|
ax-hv0cl |
⊢ 0ℎ ∈ ℋ |
12 |
|
0le1 |
⊢ 0 ≤ 1 |
13 |
|
fveq2 |
⊢ ( 𝑦 = 0ℎ → ( normℎ ‘ 𝑦 ) = ( normℎ ‘ 0ℎ ) ) |
14 |
13 6
|
eqtrdi |
⊢ ( 𝑦 = 0ℎ → ( normℎ ‘ 𝑦 ) = 0 ) |
15 |
14
|
breq1d |
⊢ ( 𝑦 = 0ℎ → ( ( normℎ ‘ 𝑦 ) ≤ 1 ↔ 0 ≤ 1 ) ) |
16 |
15
|
rspcev |
⊢ ( ( 0ℎ ∈ ℋ ∧ 0 ≤ 1 ) → ∃ 𝑦 ∈ ℋ ( normℎ ‘ 𝑦 ) ≤ 1 ) |
17 |
11 12 16
|
mp2an |
⊢ ∃ 𝑦 ∈ ℋ ( normℎ ‘ 𝑦 ) ≤ 1 |
18 |
|
r19.41v |
⊢ ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = 0 ) ↔ ( ∃ 𝑦 ∈ ℋ ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = 0 ) ) |
19 |
17 18
|
mpbiran |
⊢ ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = 0 ) ↔ 𝑥 = 0 ) |
20 |
10 19
|
bitri |
⊢ ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 0hop ‘ 𝑦 ) ) ) ↔ 𝑥 = 0 ) |
21 |
20
|
abbii |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 0hop ‘ 𝑦 ) ) ) } = { 𝑥 ∣ 𝑥 = 0 } |
22 |
|
df-sn |
⊢ { 0 } = { 𝑥 ∣ 𝑥 = 0 } |
23 |
21 22
|
eqtr4i |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 0hop ‘ 𝑦 ) ) ) } = { 0 } |
24 |
23
|
supeq1i |
⊢ sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 0hop ‘ 𝑦 ) ) ) } , ℝ* , < ) = sup ( { 0 } , ℝ* , < ) |
25 |
|
xrltso |
⊢ < Or ℝ* |
26 |
|
0xr |
⊢ 0 ∈ ℝ* |
27 |
|
supsn |
⊢ ( ( < Or ℝ* ∧ 0 ∈ ℝ* ) → sup ( { 0 } , ℝ* , < ) = 0 ) |
28 |
25 26 27
|
mp2an |
⊢ sup ( { 0 } , ℝ* , < ) = 0 |
29 |
3 24 28
|
3eqtri |
⊢ ( normop ‘ 0hop ) = 0 |