| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ch0 |
⊢ 0ℋ = { 0ℎ } |
| 2 |
1
|
eqeq2i |
⊢ ( ℋ = 0ℋ ↔ ℋ = { 0ℎ } ) |
| 3 |
|
feq3 |
⊢ ( ℋ = { 0ℎ } → ( 𝑇 : ℋ ⟶ ℋ ↔ 𝑇 : ℋ ⟶ { 0ℎ } ) ) |
| 4 |
2 3
|
sylbi |
⊢ ( ℋ = 0ℋ → ( 𝑇 : ℋ ⟶ ℋ ↔ 𝑇 : ℋ ⟶ { 0ℎ } ) ) |
| 5 |
|
ax-hv0cl |
⊢ 0ℎ ∈ ℋ |
| 6 |
5
|
elexi |
⊢ 0ℎ ∈ V |
| 7 |
6
|
fconst2 |
⊢ ( 𝑇 : ℋ ⟶ { 0ℎ } ↔ 𝑇 = ( ℋ × { 0ℎ } ) ) |
| 8 |
|
df0op2 |
⊢ 0hop = ( ℋ × 0ℋ ) |
| 9 |
1
|
xpeq2i |
⊢ ( ℋ × 0ℋ ) = ( ℋ × { 0ℎ } ) |
| 10 |
8 9
|
eqtri |
⊢ 0hop = ( ℋ × { 0ℎ } ) |
| 11 |
10
|
eqeq2i |
⊢ ( 𝑇 = 0hop ↔ 𝑇 = ( ℋ × { 0ℎ } ) ) |
| 12 |
7 11
|
bitr4i |
⊢ ( 𝑇 : ℋ ⟶ { 0ℎ } ↔ 𝑇 = 0hop ) |
| 13 |
4 12
|
bitrdi |
⊢ ( ℋ = 0ℋ → ( 𝑇 : ℋ ⟶ ℋ ↔ 𝑇 = 0hop ) ) |
| 14 |
13
|
biimpa |
⊢ ( ( ℋ = 0ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → 𝑇 = 0hop ) |
| 15 |
14
|
fveq2d |
⊢ ( ( ℋ = 0ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( normop ‘ 𝑇 ) = ( normop ‘ 0hop ) ) |
| 16 |
|
nmop0 |
⊢ ( normop ‘ 0hop ) = 0 |
| 17 |
15 16
|
eqtrdi |
⊢ ( ( ℋ = 0ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( normop ‘ 𝑇 ) = 0 ) |