Metamath Proof Explorer


Theorem nmopadji

Description: Property of the norm of an adjoint. Theorem 3.11(v) of Beran p. 106. (Contributed by NM, 22-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypothesis nmopadjle.1 𝑇 ∈ BndLinOp
Assertion nmopadji ( normop ‘ ( adj𝑇 ) ) = ( normop𝑇 )

Proof

Step Hyp Ref Expression
1 nmopadjle.1 𝑇 ∈ BndLinOp
2 1 nmopadjlem ( normop ‘ ( adj𝑇 ) ) ≤ ( normop𝑇 )
3 bdopadj ( 𝑇 ∈ BndLinOp → 𝑇 ∈ dom adj )
4 1 3 ax-mp 𝑇 ∈ dom adj
5 adjadj ( 𝑇 ∈ dom adj → ( adj ‘ ( adj𝑇 ) ) = 𝑇 )
6 4 5 ax-mp ( adj ‘ ( adj𝑇 ) ) = 𝑇
7 6 fveq2i ( normop ‘ ( adj ‘ ( adj𝑇 ) ) ) = ( normop𝑇 )
8 adjbdln ( 𝑇 ∈ BndLinOp → ( adj𝑇 ) ∈ BndLinOp )
9 1 8 ax-mp ( adj𝑇 ) ∈ BndLinOp
10 9 nmopadjlem ( normop ‘ ( adj ‘ ( adj𝑇 ) ) ) ≤ ( normop ‘ ( adj𝑇 ) )
11 7 10 eqbrtrri ( normop𝑇 ) ≤ ( normop ‘ ( adj𝑇 ) )
12 nmopre ( ( adj𝑇 ) ∈ BndLinOp → ( normop ‘ ( adj𝑇 ) ) ∈ ℝ )
13 9 12 ax-mp ( normop ‘ ( adj𝑇 ) ) ∈ ℝ
14 nmopre ( 𝑇 ∈ BndLinOp → ( normop𝑇 ) ∈ ℝ )
15 1 14 ax-mp ( normop𝑇 ) ∈ ℝ
16 13 15 letri3i ( ( normop ‘ ( adj𝑇 ) ) = ( normop𝑇 ) ↔ ( ( normop ‘ ( adj𝑇 ) ) ≤ ( normop𝑇 ) ∧ ( normop𝑇 ) ≤ ( normop ‘ ( adj𝑇 ) ) ) )
17 2 11 16 mpbir2an ( normop ‘ ( adj𝑇 ) ) = ( normop𝑇 )