Step |
Hyp |
Ref |
Expression |
1 |
|
nmopadjle.1 |
⊢ 𝑇 ∈ BndLinOp |
2 |
1
|
nmopadjlem |
⊢ ( normop ‘ ( adjℎ ‘ 𝑇 ) ) ≤ ( normop ‘ 𝑇 ) |
3 |
|
bdopadj |
⊢ ( 𝑇 ∈ BndLinOp → 𝑇 ∈ dom adjℎ ) |
4 |
1 3
|
ax-mp |
⊢ 𝑇 ∈ dom adjℎ |
5 |
|
adjadj |
⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) = 𝑇 ) |
6 |
4 5
|
ax-mp |
⊢ ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) = 𝑇 |
7 |
6
|
fveq2i |
⊢ ( normop ‘ ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ) = ( normop ‘ 𝑇 ) |
8 |
|
adjbdln |
⊢ ( 𝑇 ∈ BndLinOp → ( adjℎ ‘ 𝑇 ) ∈ BndLinOp ) |
9 |
1 8
|
ax-mp |
⊢ ( adjℎ ‘ 𝑇 ) ∈ BndLinOp |
10 |
9
|
nmopadjlem |
⊢ ( normop ‘ ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ) ≤ ( normop ‘ ( adjℎ ‘ 𝑇 ) ) |
11 |
7 10
|
eqbrtrri |
⊢ ( normop ‘ 𝑇 ) ≤ ( normop ‘ ( adjℎ ‘ 𝑇 ) ) |
12 |
|
nmopre |
⊢ ( ( adjℎ ‘ 𝑇 ) ∈ BndLinOp → ( normop ‘ ( adjℎ ‘ 𝑇 ) ) ∈ ℝ ) |
13 |
9 12
|
ax-mp |
⊢ ( normop ‘ ( adjℎ ‘ 𝑇 ) ) ∈ ℝ |
14 |
|
nmopre |
⊢ ( 𝑇 ∈ BndLinOp → ( normop ‘ 𝑇 ) ∈ ℝ ) |
15 |
1 14
|
ax-mp |
⊢ ( normop ‘ 𝑇 ) ∈ ℝ |
16 |
13 15
|
letri3i |
⊢ ( ( normop ‘ ( adjℎ ‘ 𝑇 ) ) = ( normop ‘ 𝑇 ) ↔ ( ( normop ‘ ( adjℎ ‘ 𝑇 ) ) ≤ ( normop ‘ 𝑇 ) ∧ ( normop ‘ 𝑇 ) ≤ ( normop ‘ ( adjℎ ‘ 𝑇 ) ) ) ) |
17 |
2 11 16
|
mpbir2an |
⊢ ( normop ‘ ( adjℎ ‘ 𝑇 ) ) = ( normop ‘ 𝑇 ) |