Metamath Proof Explorer


Theorem nmopadjlei

Description: Property of the norm of an adjoint. Part of proof of Theorem 3.10 of Beran p. 104. (Contributed by NM, 22-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypothesis nmopadjle.1 𝑇 ∈ BndLinOp
Assertion nmopadjlei ( 𝐴 ∈ ℋ → ( norm ‘ ( ( adj𝑇 ) ‘ 𝐴 ) ) ≤ ( ( normop𝑇 ) · ( norm𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 nmopadjle.1 𝑇 ∈ BndLinOp
2 bdopssadj BndLinOp ⊆ dom adj
3 2 1 sselii 𝑇 ∈ dom adj
4 adjvalval ( ( 𝑇 ∈ dom adj𝐴 ∈ ℋ ) → ( ( adj𝑇 ) ‘ 𝐴 ) = ( 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝐴 ) = ( 𝑣 ·ih 𝑓 ) ) )
5 3 4 mpan ( 𝐴 ∈ ℋ → ( ( adj𝑇 ) ‘ 𝐴 ) = ( 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝐴 ) = ( 𝑣 ·ih 𝑓 ) ) )
6 oveq2 ( 𝑧 = 𝐴 → ( ( 𝑇𝑣 ) ·ih 𝑧 ) = ( ( 𝑇𝑣 ) ·ih 𝐴 ) )
7 6 eqeq1d ( 𝑧 = 𝐴 → ( ( ( 𝑇𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ↔ ( ( 𝑇𝑣 ) ·ih 𝐴 ) = ( 𝑣 ·ih 𝑓 ) ) )
8 7 ralbidv ( 𝑧 = 𝐴 → ( ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ↔ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝐴 ) = ( 𝑣 ·ih 𝑓 ) ) )
9 8 riotabidv ( 𝑧 = 𝐴 → ( 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) = ( 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝐴 ) = ( 𝑣 ·ih 𝑓 ) ) )
10 eqid ( 𝑧 ∈ ℋ ↦ ( 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) ) = ( 𝑧 ∈ ℋ ↦ ( 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) )
11 riotaex ( 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝐴 ) = ( 𝑣 ·ih 𝑓 ) ) ∈ V
12 9 10 11 fvmpt ( 𝐴 ∈ ℋ → ( ( 𝑧 ∈ ℋ ↦ ( 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) ) ‘ 𝐴 ) = ( 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝐴 ) = ( 𝑣 ·ih 𝑓 ) ) )
13 5 12 eqtr4d ( 𝐴 ∈ ℋ → ( ( adj𝑇 ) ‘ 𝐴 ) = ( ( 𝑧 ∈ ℋ ↦ ( 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) ) ‘ 𝐴 ) )
14 13 fveq2d ( 𝐴 ∈ ℋ → ( norm ‘ ( ( adj𝑇 ) ‘ 𝐴 ) ) = ( norm ‘ ( ( 𝑧 ∈ ℋ ↦ ( 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) ) ‘ 𝐴 ) ) )
15 inss1 ( LinOp ∩ ContOp ) ⊆ LinOp
16 lncnbd ( LinOp ∩ ContOp ) = BndLinOp
17 1 16 eleqtrri 𝑇 ∈ ( LinOp ∩ ContOp )
18 15 17 sselii 𝑇 ∈ LinOp
19 inss2 ( LinOp ∩ ContOp ) ⊆ ContOp
20 19 17 sselii 𝑇 ∈ ContOp
21 eqid ( 𝑔 ∈ ℋ ↦ ( ( 𝑇𝑔 ) ·ih 𝑧 ) ) = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇𝑔 ) ·ih 𝑧 ) )
22 oveq2 ( 𝑓 = 𝑤 → ( 𝑣 ·ih 𝑓 ) = ( 𝑣 ·ih 𝑤 ) )
23 22 eqeq2d ( 𝑓 = 𝑤 → ( ( ( 𝑇𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ↔ ( ( 𝑇𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑤 ) ) )
24 23 ralbidv ( 𝑓 = 𝑤 → ( ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ↔ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑤 ) ) )
25 24 cbvriotavw ( 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) = ( 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑤 ) )
26 18 20 21 25 10 cnlnadjlem7 ( 𝐴 ∈ ℋ → ( norm ‘ ( ( 𝑧 ∈ ℋ ↦ ( 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) ) ‘ 𝐴 ) ) ≤ ( ( normop𝑇 ) · ( norm𝐴 ) ) )
27 14 26 eqbrtrd ( 𝐴 ∈ ℋ → ( norm ‘ ( ( adj𝑇 ) ‘ 𝐴 ) ) ≤ ( ( normop𝑇 ) · ( norm𝐴 ) ) )