Step |
Hyp |
Ref |
Expression |
1 |
|
nmopadjle.1 |
⊢ 𝑇 ∈ BndLinOp |
2 |
|
bdopssadj |
⊢ BndLinOp ⊆ dom adjℎ |
3 |
2 1
|
sselii |
⊢ 𝑇 ∈ dom adjℎ |
4 |
|
adjvalval |
⊢ ( ( 𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ) → ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) = ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝐴 ) = ( 𝑣 ·ih 𝑓 ) ) ) |
5 |
3 4
|
mpan |
⊢ ( 𝐴 ∈ ℋ → ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) = ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝐴 ) = ( 𝑣 ·ih 𝑓 ) ) ) |
6 |
|
oveq2 |
⊢ ( 𝑧 = 𝐴 → ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( ( 𝑇 ‘ 𝑣 ) ·ih 𝐴 ) ) |
7 |
6
|
eqeq1d |
⊢ ( 𝑧 = 𝐴 → ( ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ↔ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝐴 ) = ( 𝑣 ·ih 𝑓 ) ) ) |
8 |
7
|
ralbidv |
⊢ ( 𝑧 = 𝐴 → ( ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ↔ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝐴 ) = ( 𝑣 ·ih 𝑓 ) ) ) |
9 |
8
|
riotabidv |
⊢ ( 𝑧 = 𝐴 → ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) = ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝐴 ) = ( 𝑣 ·ih 𝑓 ) ) ) |
10 |
|
eqid |
⊢ ( 𝑧 ∈ ℋ ↦ ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) ) = ( 𝑧 ∈ ℋ ↦ ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) ) |
11 |
|
riotaex |
⊢ ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝐴 ) = ( 𝑣 ·ih 𝑓 ) ) ∈ V |
12 |
9 10 11
|
fvmpt |
⊢ ( 𝐴 ∈ ℋ → ( ( 𝑧 ∈ ℋ ↦ ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) ) ‘ 𝐴 ) = ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝐴 ) = ( 𝑣 ·ih 𝑓 ) ) ) |
13 |
5 12
|
eqtr4d |
⊢ ( 𝐴 ∈ ℋ → ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) = ( ( 𝑧 ∈ ℋ ↦ ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) ) ‘ 𝐴 ) ) |
14 |
13
|
fveq2d |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) = ( normℎ ‘ ( ( 𝑧 ∈ ℋ ↦ ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) ) ‘ 𝐴 ) ) ) |
15 |
|
inss1 |
⊢ ( LinOp ∩ ContOp ) ⊆ LinOp |
16 |
|
lncnbd |
⊢ ( LinOp ∩ ContOp ) = BndLinOp |
17 |
1 16
|
eleqtrri |
⊢ 𝑇 ∈ ( LinOp ∩ ContOp ) |
18 |
15 17
|
sselii |
⊢ 𝑇 ∈ LinOp |
19 |
|
inss2 |
⊢ ( LinOp ∩ ContOp ) ⊆ ContOp |
20 |
19 17
|
sselii |
⊢ 𝑇 ∈ ContOp |
21 |
|
eqid |
⊢ ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑧 ) ) = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑧 ) ) |
22 |
|
oveq2 |
⊢ ( 𝑓 = 𝑤 → ( 𝑣 ·ih 𝑓 ) = ( 𝑣 ·ih 𝑤 ) ) |
23 |
22
|
eqeq2d |
⊢ ( 𝑓 = 𝑤 → ( ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ↔ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑤 ) ) ) |
24 |
23
|
ralbidv |
⊢ ( 𝑓 = 𝑤 → ( ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ↔ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑤 ) ) ) |
25 |
24
|
cbvriotavw |
⊢ ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) = ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑤 ) ) |
26 |
18 20 21 25 10
|
cnlnadjlem7 |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( ( 𝑧 ∈ ℋ ↦ ( ℩ 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) ) ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
27 |
14 26
|
eqbrtrd |
⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ ( ( adjℎ ‘ 𝑇 ) ‘ 𝐴 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |