Step |
Hyp |
Ref |
Expression |
1 |
|
nmopcoadj.1 |
⊢ 𝑇 ∈ BndLinOp |
2 |
1
|
nmopcoadj2i |
⊢ ( normop ‘ ( 𝑇 ∘ ( adjℎ ‘ 𝑇 ) ) ) = ( ( normop ‘ 𝑇 ) ↑ 2 ) |
3 |
2
|
eqeq1i |
⊢ ( ( normop ‘ ( 𝑇 ∘ ( adjℎ ‘ 𝑇 ) ) ) = 0 ↔ ( ( normop ‘ 𝑇 ) ↑ 2 ) = 0 ) |
4 |
|
nmopre |
⊢ ( 𝑇 ∈ BndLinOp → ( normop ‘ 𝑇 ) ∈ ℝ ) |
5 |
1 4
|
ax-mp |
⊢ ( normop ‘ 𝑇 ) ∈ ℝ |
6 |
5
|
recni |
⊢ ( normop ‘ 𝑇 ) ∈ ℂ |
7 |
6
|
sqeq0i |
⊢ ( ( ( normop ‘ 𝑇 ) ↑ 2 ) = 0 ↔ ( normop ‘ 𝑇 ) = 0 ) |
8 |
3 7
|
bitri |
⊢ ( ( normop ‘ ( 𝑇 ∘ ( adjℎ ‘ 𝑇 ) ) ) = 0 ↔ ( normop ‘ 𝑇 ) = 0 ) |
9 |
|
bdopln |
⊢ ( 𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp ) |
10 |
1 9
|
ax-mp |
⊢ 𝑇 ∈ LinOp |
11 |
|
adjbdln |
⊢ ( 𝑇 ∈ BndLinOp → ( adjℎ ‘ 𝑇 ) ∈ BndLinOp ) |
12 |
1 11
|
ax-mp |
⊢ ( adjℎ ‘ 𝑇 ) ∈ BndLinOp |
13 |
|
bdopln |
⊢ ( ( adjℎ ‘ 𝑇 ) ∈ BndLinOp → ( adjℎ ‘ 𝑇 ) ∈ LinOp ) |
14 |
12 13
|
ax-mp |
⊢ ( adjℎ ‘ 𝑇 ) ∈ LinOp |
15 |
10 14
|
lnopcoi |
⊢ ( 𝑇 ∘ ( adjℎ ‘ 𝑇 ) ) ∈ LinOp |
16 |
15
|
nmlnop0iHIL |
⊢ ( ( normop ‘ ( 𝑇 ∘ ( adjℎ ‘ 𝑇 ) ) ) = 0 ↔ ( 𝑇 ∘ ( adjℎ ‘ 𝑇 ) ) = 0hop ) |
17 |
10
|
nmlnop0iHIL |
⊢ ( ( normop ‘ 𝑇 ) = 0 ↔ 𝑇 = 0hop ) |
18 |
8 16 17
|
3bitr3i |
⊢ ( ( 𝑇 ∘ ( adjℎ ‘ 𝑇 ) ) = 0hop ↔ 𝑇 = 0hop ) |