Metamath Proof Explorer


Theorem nmopcoadj2i

Description: The norm of an operator composed with its adjoint. Part of Theorem 3.11(vi) of Beran p. 106. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypothesis nmopcoadj.1 𝑇 ∈ BndLinOp
Assertion nmopcoadj2i ( normop ‘ ( 𝑇 ∘ ( adj𝑇 ) ) ) = ( ( normop𝑇 ) ↑ 2 )

Proof

Step Hyp Ref Expression
1 nmopcoadj.1 𝑇 ∈ BndLinOp
2 adjbdln ( 𝑇 ∈ BndLinOp → ( adj𝑇 ) ∈ BndLinOp )
3 1 2 ax-mp ( adj𝑇 ) ∈ BndLinOp
4 3 nmopcoadji ( normop ‘ ( ( adj ‘ ( adj𝑇 ) ) ∘ ( adj𝑇 ) ) ) = ( ( normop ‘ ( adj𝑇 ) ) ↑ 2 )
5 bdopadj ( 𝑇 ∈ BndLinOp → 𝑇 ∈ dom adj )
6 1 5 ax-mp 𝑇 ∈ dom adj
7 adjadj ( 𝑇 ∈ dom adj → ( adj ‘ ( adj𝑇 ) ) = 𝑇 )
8 6 7 ax-mp ( adj ‘ ( adj𝑇 ) ) = 𝑇
9 8 coeq1i ( ( adj ‘ ( adj𝑇 ) ) ∘ ( adj𝑇 ) ) = ( 𝑇 ∘ ( adj𝑇 ) )
10 9 fveq2i ( normop ‘ ( ( adj ‘ ( adj𝑇 ) ) ∘ ( adj𝑇 ) ) ) = ( normop ‘ ( 𝑇 ∘ ( adj𝑇 ) ) )
11 1 nmopadji ( normop ‘ ( adj𝑇 ) ) = ( normop𝑇 )
12 11 oveq1i ( ( normop ‘ ( adj𝑇 ) ) ↑ 2 ) = ( ( normop𝑇 ) ↑ 2 )
13 4 10 12 3eqtr3i ( normop ‘ ( 𝑇 ∘ ( adj𝑇 ) ) ) = ( ( normop𝑇 ) ↑ 2 )