Step |
Hyp |
Ref |
Expression |
1 |
|
nmopcoadj.1 |
⊢ 𝑇 ∈ BndLinOp |
2 |
|
adjbdln |
⊢ ( 𝑇 ∈ BndLinOp → ( adjℎ ‘ 𝑇 ) ∈ BndLinOp ) |
3 |
1 2
|
ax-mp |
⊢ ( adjℎ ‘ 𝑇 ) ∈ BndLinOp |
4 |
3
|
nmopcoadji |
⊢ ( normop ‘ ( ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ∘ ( adjℎ ‘ 𝑇 ) ) ) = ( ( normop ‘ ( adjℎ ‘ 𝑇 ) ) ↑ 2 ) |
5 |
|
bdopadj |
⊢ ( 𝑇 ∈ BndLinOp → 𝑇 ∈ dom adjℎ ) |
6 |
1 5
|
ax-mp |
⊢ 𝑇 ∈ dom adjℎ |
7 |
|
adjadj |
⊢ ( 𝑇 ∈ dom adjℎ → ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) = 𝑇 ) |
8 |
6 7
|
ax-mp |
⊢ ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) = 𝑇 |
9 |
8
|
coeq1i |
⊢ ( ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ∘ ( adjℎ ‘ 𝑇 ) ) = ( 𝑇 ∘ ( adjℎ ‘ 𝑇 ) ) |
10 |
9
|
fveq2i |
⊢ ( normop ‘ ( ( adjℎ ‘ ( adjℎ ‘ 𝑇 ) ) ∘ ( adjℎ ‘ 𝑇 ) ) ) = ( normop ‘ ( 𝑇 ∘ ( adjℎ ‘ 𝑇 ) ) ) |
11 |
1
|
nmopadji |
⊢ ( normop ‘ ( adjℎ ‘ 𝑇 ) ) = ( normop ‘ 𝑇 ) |
12 |
11
|
oveq1i |
⊢ ( ( normop ‘ ( adjℎ ‘ 𝑇 ) ) ↑ 2 ) = ( ( normop ‘ 𝑇 ) ↑ 2 ) |
13 |
4 10 12
|
3eqtr3i |
⊢ ( normop ‘ ( 𝑇 ∘ ( adjℎ ‘ 𝑇 ) ) ) = ( ( normop ‘ 𝑇 ) ↑ 2 ) |