Step |
Hyp |
Ref |
Expression |
1 |
|
nmoptri.1 |
⊢ 𝑆 ∈ BndLinOp |
2 |
|
nmoptri.2 |
⊢ 𝑇 ∈ BndLinOp |
3 |
|
bdopln |
⊢ ( 𝑆 ∈ BndLinOp → 𝑆 ∈ LinOp ) |
4 |
1 3
|
ax-mp |
⊢ 𝑆 ∈ LinOp |
5 |
|
bdopln |
⊢ ( 𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp ) |
6 |
2 5
|
ax-mp |
⊢ 𝑇 ∈ LinOp |
7 |
4 6
|
lnopcoi |
⊢ ( 𝑆 ∘ 𝑇 ) ∈ LinOp |
8 |
7
|
lnopfi |
⊢ ( 𝑆 ∘ 𝑇 ) : ℋ ⟶ ℋ |
9 |
|
nmopre |
⊢ ( 𝑆 ∈ BndLinOp → ( normop ‘ 𝑆 ) ∈ ℝ ) |
10 |
1 9
|
ax-mp |
⊢ ( normop ‘ 𝑆 ) ∈ ℝ |
11 |
|
nmopre |
⊢ ( 𝑇 ∈ BndLinOp → ( normop ‘ 𝑇 ) ∈ ℝ ) |
12 |
2 11
|
ax-mp |
⊢ ( normop ‘ 𝑇 ) ∈ ℝ |
13 |
10 12
|
remulcli |
⊢ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ∈ ℝ |
14 |
13
|
rexri |
⊢ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ∈ ℝ* |
15 |
|
nmopub |
⊢ ( ( ( 𝑆 ∘ 𝑇 ) : ℋ ⟶ ℋ ∧ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ∈ ℝ* ) → ( ( normop ‘ ( 𝑆 ∘ 𝑇 ) ) ≤ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ) ) ) |
16 |
8 14 15
|
mp2an |
⊢ ( ( normop ‘ ( 𝑆 ∘ 𝑇 ) ) ≤ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ) ) |
17 |
|
0le0 |
⊢ 0 ≤ 0 |
18 |
17
|
a1i |
⊢ ( ( ( normop ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ ℋ ) → 0 ≤ 0 ) |
19 |
4 6
|
lnopco0i |
⊢ ( ( normop ‘ 𝑇 ) = 0 → ( normop ‘ ( 𝑆 ∘ 𝑇 ) ) = 0 ) |
20 |
7
|
nmlnop0iHIL |
⊢ ( ( normop ‘ ( 𝑆 ∘ 𝑇 ) ) = 0 ↔ ( 𝑆 ∘ 𝑇 ) = 0hop ) |
21 |
19 20
|
sylib |
⊢ ( ( normop ‘ 𝑇 ) = 0 → ( 𝑆 ∘ 𝑇 ) = 0hop ) |
22 |
|
fveq1 |
⊢ ( ( 𝑆 ∘ 𝑇 ) = 0hop → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) = ( 0hop ‘ 𝑥 ) ) |
23 |
22
|
fveq2d |
⊢ ( ( 𝑆 ∘ 𝑇 ) = 0hop → ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) = ( normℎ ‘ ( 0hop ‘ 𝑥 ) ) ) |
24 |
|
ho0val |
⊢ ( 𝑥 ∈ ℋ → ( 0hop ‘ 𝑥 ) = 0ℎ ) |
25 |
24
|
fveq2d |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( 0hop ‘ 𝑥 ) ) = ( normℎ ‘ 0ℎ ) ) |
26 |
|
norm0 |
⊢ ( normℎ ‘ 0ℎ ) = 0 |
27 |
25 26
|
eqtrdi |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( 0hop ‘ 𝑥 ) ) = 0 ) |
28 |
23 27
|
sylan9eq |
⊢ ( ( ( 𝑆 ∘ 𝑇 ) = 0hop ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) = 0 ) |
29 |
21 28
|
sylan |
⊢ ( ( ( normop ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) = 0 ) |
30 |
|
oveq2 |
⊢ ( ( normop ‘ 𝑇 ) = 0 → ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) = ( ( normop ‘ 𝑆 ) · 0 ) ) |
31 |
10
|
recni |
⊢ ( normop ‘ 𝑆 ) ∈ ℂ |
32 |
31
|
mul01i |
⊢ ( ( normop ‘ 𝑆 ) · 0 ) = 0 |
33 |
30 32
|
eqtrdi |
⊢ ( ( normop ‘ 𝑇 ) = 0 → ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) = 0 ) |
34 |
33
|
adantr |
⊢ ( ( ( normop ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ ℋ ) → ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) = 0 ) |
35 |
18 29 34
|
3brtr4d |
⊢ ( ( ( normop ‘ 𝑇 ) = 0 ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ) |
36 |
35
|
adantrr |
⊢ ( ( ( normop ‘ 𝑇 ) = 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ) |
37 |
|
df-ne |
⊢ ( ( normop ‘ 𝑇 ) ≠ 0 ↔ ¬ ( normop ‘ 𝑇 ) = 0 ) |
38 |
8
|
ffvelrni |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ∈ ℋ ) |
39 |
|
normcl |
⊢ ( ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ∈ ℋ → ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ∈ ℝ ) |
40 |
38 39
|
syl |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ∈ ℝ ) |
41 |
40
|
recnd |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ∈ ℂ ) |
42 |
12
|
recni |
⊢ ( normop ‘ 𝑇 ) ∈ ℂ |
43 |
|
divrec2 |
⊢ ( ( ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ∈ ℂ ∧ ( normop ‘ 𝑇 ) ∈ ℂ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) = ( ( 1 / ( normop ‘ 𝑇 ) ) · ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ) ) |
44 |
42 43
|
mp3an2 |
⊢ ( ( ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ∈ ℂ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) = ( ( 1 / ( normop ‘ 𝑇 ) ) · ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ) ) |
45 |
41 44
|
sylan |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) = ( ( 1 / ( normop ‘ 𝑇 ) ) · ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ) ) |
46 |
45
|
ancoms |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) = ( ( 1 / ( normop ‘ 𝑇 ) ) · ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ) ) |
47 |
12
|
rerecclzi |
⊢ ( ( normop ‘ 𝑇 ) ≠ 0 → ( 1 / ( normop ‘ 𝑇 ) ) ∈ ℝ ) |
48 |
|
bdopf |
⊢ ( 𝑇 ∈ BndLinOp → 𝑇 : ℋ ⟶ ℋ ) |
49 |
2 48
|
ax-mp |
⊢ 𝑇 : ℋ ⟶ ℋ |
50 |
|
nmopgt0 |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( ( normop ‘ 𝑇 ) ≠ 0 ↔ 0 < ( normop ‘ 𝑇 ) ) ) |
51 |
49 50
|
ax-mp |
⊢ ( ( normop ‘ 𝑇 ) ≠ 0 ↔ 0 < ( normop ‘ 𝑇 ) ) |
52 |
12
|
recgt0i |
⊢ ( 0 < ( normop ‘ 𝑇 ) → 0 < ( 1 / ( normop ‘ 𝑇 ) ) ) |
53 |
51 52
|
sylbi |
⊢ ( ( normop ‘ 𝑇 ) ≠ 0 → 0 < ( 1 / ( normop ‘ 𝑇 ) ) ) |
54 |
|
0re |
⊢ 0 ∈ ℝ |
55 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ ( 1 / ( normop ‘ 𝑇 ) ) ∈ ℝ ) → ( 0 < ( 1 / ( normop ‘ 𝑇 ) ) → 0 ≤ ( 1 / ( normop ‘ 𝑇 ) ) ) ) |
56 |
54 55
|
mpan |
⊢ ( ( 1 / ( normop ‘ 𝑇 ) ) ∈ ℝ → ( 0 < ( 1 / ( normop ‘ 𝑇 ) ) → 0 ≤ ( 1 / ( normop ‘ 𝑇 ) ) ) ) |
57 |
47 53 56
|
sylc |
⊢ ( ( normop ‘ 𝑇 ) ≠ 0 → 0 ≤ ( 1 / ( normop ‘ 𝑇 ) ) ) |
58 |
47 57
|
absidd |
⊢ ( ( normop ‘ 𝑇 ) ≠ 0 → ( abs ‘ ( 1 / ( normop ‘ 𝑇 ) ) ) = ( 1 / ( normop ‘ 𝑇 ) ) ) |
59 |
58
|
adantr |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( abs ‘ ( 1 / ( normop ‘ 𝑇 ) ) ) = ( 1 / ( normop ‘ 𝑇 ) ) ) |
60 |
59
|
oveq1d |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( ( abs ‘ ( 1 / ( normop ‘ 𝑇 ) ) ) · ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ) = ( ( 1 / ( normop ‘ 𝑇 ) ) · ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ) ) |
61 |
46 60
|
eqtr4d |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) = ( ( abs ‘ ( 1 / ( normop ‘ 𝑇 ) ) ) · ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ) ) |
62 |
42
|
recclzi |
⊢ ( ( normop ‘ 𝑇 ) ≠ 0 → ( 1 / ( normop ‘ 𝑇 ) ) ∈ ℂ ) |
63 |
|
norm-iii |
⊢ ( ( ( 1 / ( normop ‘ 𝑇 ) ) ∈ ℂ ∧ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ∈ ℋ ) → ( normℎ ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ) = ( ( abs ‘ ( 1 / ( normop ‘ 𝑇 ) ) ) · ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ) ) |
64 |
62 38 63
|
syl2an |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ) = ( ( abs ‘ ( 1 / ( normop ‘ 𝑇 ) ) ) · ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ) ) |
65 |
61 64
|
eqtr4d |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) = ( normℎ ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ) ) |
66 |
49
|
ffvelrni |
⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
67 |
4
|
lnopmuli |
⊢ ( ( ( 1 / ( normop ‘ 𝑇 ) ) ∈ ℂ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) → ( 𝑆 ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
68 |
62 66 67
|
syl2an |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( 𝑆 ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
69 |
|
bdopf |
⊢ ( 𝑆 ∈ BndLinOp → 𝑆 : ℋ ⟶ ℋ ) |
70 |
1 69
|
ax-mp |
⊢ 𝑆 : ℋ ⟶ ℋ |
71 |
70 49
|
hocoi |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) = ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
72 |
71
|
oveq2d |
⊢ ( 𝑥 ∈ ℋ → ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) = ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
73 |
72
|
adantl |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) = ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑆 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
74 |
68 73
|
eqtr4d |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( 𝑆 ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ) |
75 |
74
|
fveq2d |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( 𝑆 ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) = ( normℎ ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ) ) |
76 |
65 75
|
eqtr4d |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) = ( normℎ ‘ ( 𝑆 ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
77 |
76
|
adantrr |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) = ( normℎ ‘ ( 𝑆 ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
78 |
|
hvmulcl |
⊢ ( ( ( 1 / ( normop ‘ 𝑇 ) ) ∈ ℂ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) → ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ ) |
79 |
62 66 78
|
syl2an |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ ) |
80 |
79
|
adantrr |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ ) |
81 |
|
norm-iii |
⊢ ( ( ( 1 / ( normop ‘ 𝑇 ) ) ∈ ℂ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) → ( normℎ ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( ( abs ‘ ( 1 / ( normop ‘ 𝑇 ) ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
82 |
62 66 81
|
syl2an |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( ( abs ‘ ( 1 / ( normop ‘ 𝑇 ) ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
83 |
|
normcl |
⊢ ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
84 |
66 83
|
syl |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
85 |
84
|
recnd |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℂ ) |
86 |
|
divrec2 |
⊢ ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℂ ∧ ( normop ‘ 𝑇 ) ∈ ℂ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) = ( ( 1 / ( normop ‘ 𝑇 ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
87 |
42 86
|
mp3an2 |
⊢ ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℂ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) = ( ( 1 / ( normop ‘ 𝑇 ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
88 |
85 87
|
sylan |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) = ( ( 1 / ( normop ‘ 𝑇 ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
89 |
88
|
ancoms |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) = ( ( 1 / ( normop ‘ 𝑇 ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
90 |
59
|
oveq1d |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( ( abs ‘ ( 1 / ( normop ‘ 𝑇 ) ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) = ( ( 1 / ( normop ‘ 𝑇 ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
91 |
89 90
|
eqtr4d |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) = ( ( abs ‘ ( 1 / ( normop ‘ 𝑇 ) ) ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
92 |
82 91
|
eqtr4d |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) ) |
93 |
92
|
adantrr |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( normℎ ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) ) |
94 |
|
nmoplb |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑇 ) ) |
95 |
49 94
|
mp3an1 |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑇 ) ) |
96 |
42
|
mulid2i |
⊢ ( 1 · ( normop ‘ 𝑇 ) ) = ( normop ‘ 𝑇 ) |
97 |
95 96
|
breqtrrdi |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 1 · ( normop ‘ 𝑇 ) ) ) |
98 |
97
|
adantl |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 1 · ( normop ‘ 𝑇 ) ) ) |
99 |
84
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
100 |
|
1red |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → 1 ∈ ℝ ) |
101 |
12
|
a1i |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( normop ‘ 𝑇 ) ∈ ℝ ) |
102 |
51
|
biimpi |
⊢ ( ( normop ‘ 𝑇 ) ≠ 0 → 0 < ( normop ‘ 𝑇 ) ) |
103 |
102
|
adantl |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → 0 < ( normop ‘ 𝑇 ) ) |
104 |
|
ledivmul2 |
⊢ ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ 0 < ( normop ‘ 𝑇 ) ) ) → ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) ≤ 1 ↔ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 1 · ( normop ‘ 𝑇 ) ) ) ) |
105 |
99 100 101 103 104
|
syl112anc |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normop ‘ 𝑇 ) ≠ 0 ) → ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) ≤ 1 ↔ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 1 · ( normop ‘ 𝑇 ) ) ) ) |
106 |
105
|
ancoms |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ 𝑥 ∈ ℋ ) → ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) ≤ 1 ↔ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 1 · ( normop ‘ 𝑇 ) ) ) ) |
107 |
106
|
adantrr |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) ≤ 1 ↔ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 1 · ( normop ‘ 𝑇 ) ) ) ) |
108 |
98 107
|
mpbird |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) ≤ 1 ) |
109 |
93 108
|
eqbrtrd |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( normℎ ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ≤ 1 ) |
110 |
|
nmoplb |
⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ ∧ ( normℎ ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ≤ 1 ) → ( normℎ ‘ ( 𝑆 ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) ≤ ( normop ‘ 𝑆 ) ) |
111 |
70 110
|
mp3an1 |
⊢ ( ( ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ ∧ ( normℎ ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ≤ 1 ) → ( normℎ ‘ ( 𝑆 ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) ≤ ( normop ‘ 𝑆 ) ) |
112 |
80 109 111
|
syl2anc |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( normℎ ‘ ( 𝑆 ‘ ( ( 1 / ( normop ‘ 𝑇 ) ) ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) ≤ ( normop ‘ 𝑆 ) ) |
113 |
77 112
|
eqbrtrd |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) ≤ ( normop ‘ 𝑆 ) ) |
114 |
40
|
ad2antrl |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ∈ ℝ ) |
115 |
10
|
a1i |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( normop ‘ 𝑆 ) ∈ ℝ ) |
116 |
102
|
adantr |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → 0 < ( normop ‘ 𝑇 ) ) |
117 |
116 12
|
jctil |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ 0 < ( normop ‘ 𝑇 ) ) ) |
118 |
|
ledivmul2 |
⊢ ( ( ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ∈ ℝ ∧ ( normop ‘ 𝑆 ) ∈ ℝ ∧ ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ 0 < ( normop ‘ 𝑇 ) ) ) → ( ( ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) ≤ ( normop ‘ 𝑆 ) ↔ ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ) ) |
119 |
114 115 117 118
|
syl3anc |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) / ( normop ‘ 𝑇 ) ) ≤ ( normop ‘ 𝑆 ) ↔ ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ) ) |
120 |
113 119
|
mpbid |
⊢ ( ( ( normop ‘ 𝑇 ) ≠ 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ) |
121 |
37 120
|
sylanbr |
⊢ ( ( ¬ ( normop ‘ 𝑇 ) = 0 ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ) |
122 |
36 121
|
pm2.61ian |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ) |
123 |
122
|
ex |
⊢ ( 𝑥 ∈ ℋ → ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( ( 𝑆 ∘ 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) ) ) |
124 |
16 123
|
mprgbir |
⊢ ( normop ‘ ( 𝑆 ∘ 𝑇 ) ) ≤ ( ( normop ‘ 𝑆 ) · ( normop ‘ 𝑇 ) ) |