Metamath Proof Explorer


Theorem nmopge0

Description: The norm of any Hilbert space operator is nonnegative. (Contributed by NM, 9-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmopge0 ( 𝑇 : ℋ ⟶ ℋ → 0 ≤ ( normop𝑇 ) )

Proof

Step Hyp Ref Expression
1 ax-hv0cl 0 ∈ ℋ
2 ffvelrn ( ( 𝑇 : ℋ ⟶ ℋ ∧ 0 ∈ ℋ ) → ( 𝑇 ‘ 0 ) ∈ ℋ )
3 1 2 mpan2 ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇 ‘ 0 ) ∈ ℋ )
4 normge0 ( ( 𝑇 ‘ 0 ) ∈ ℋ → 0 ≤ ( norm ‘ ( 𝑇 ‘ 0 ) ) )
5 3 4 syl ( 𝑇 : ℋ ⟶ ℋ → 0 ≤ ( norm ‘ ( 𝑇 ‘ 0 ) ) )
6 norm0 ( norm ‘ 0 ) = 0
7 0le1 0 ≤ 1
8 6 7 eqbrtri ( norm ‘ 0 ) ≤ 1
9 nmoplb ( ( 𝑇 : ℋ ⟶ ℋ ∧ 0 ∈ ℋ ∧ ( norm ‘ 0 ) ≤ 1 ) → ( norm ‘ ( 𝑇 ‘ 0 ) ) ≤ ( normop𝑇 ) )
10 1 8 9 mp3an23 ( 𝑇 : ℋ ⟶ ℋ → ( norm ‘ ( 𝑇 ‘ 0 ) ) ≤ ( normop𝑇 ) )
11 normcl ( ( 𝑇 ‘ 0 ) ∈ ℋ → ( norm ‘ ( 𝑇 ‘ 0 ) ) ∈ ℝ )
12 3 11 syl ( 𝑇 : ℋ ⟶ ℋ → ( norm ‘ ( 𝑇 ‘ 0 ) ) ∈ ℝ )
13 12 rexrd ( 𝑇 : ℋ ⟶ ℋ → ( norm ‘ ( 𝑇 ‘ 0 ) ) ∈ ℝ* )
14 nmopxr ( 𝑇 : ℋ ⟶ ℋ → ( normop𝑇 ) ∈ ℝ* )
15 0xr 0 ∈ ℝ*
16 xrletr ( ( 0 ∈ ℝ* ∧ ( norm ‘ ( 𝑇 ‘ 0 ) ) ∈ ℝ* ∧ ( normop𝑇 ) ∈ ℝ* ) → ( ( 0 ≤ ( norm ‘ ( 𝑇 ‘ 0 ) ) ∧ ( norm ‘ ( 𝑇 ‘ 0 ) ) ≤ ( normop𝑇 ) ) → 0 ≤ ( normop𝑇 ) ) )
17 15 16 mp3an1 ( ( ( norm ‘ ( 𝑇 ‘ 0 ) ) ∈ ℝ* ∧ ( normop𝑇 ) ∈ ℝ* ) → ( ( 0 ≤ ( norm ‘ ( 𝑇 ‘ 0 ) ) ∧ ( norm ‘ ( 𝑇 ‘ 0 ) ) ≤ ( normop𝑇 ) ) → 0 ≤ ( normop𝑇 ) ) )
18 13 14 17 syl2anc ( 𝑇 : ℋ ⟶ ℋ → ( ( 0 ≤ ( norm ‘ ( 𝑇 ‘ 0 ) ) ∧ ( norm ‘ ( 𝑇 ‘ 0 ) ) ≤ ( normop𝑇 ) ) → 0 ≤ ( normop𝑇 ) ) )
19 5 10 18 mp2and ( 𝑇 : ℋ ⟶ ℋ → 0 ≤ ( normop𝑇 ) )