| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmopxr |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( normop ‘ 𝑇 ) ∈ ℝ* ) |
| 2 |
|
nmopge0 |
⊢ ( 𝑇 : ℋ ⟶ ℋ → 0 ≤ ( normop ‘ 𝑇 ) ) |
| 3 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 4 |
|
xrleltne |
⊢ ( ( 0 ∈ ℝ* ∧ ( normop ‘ 𝑇 ) ∈ ℝ* ∧ 0 ≤ ( normop ‘ 𝑇 ) ) → ( 0 < ( normop ‘ 𝑇 ) ↔ ( normop ‘ 𝑇 ) ≠ 0 ) ) |
| 5 |
3 4
|
mp3an1 |
⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℝ* ∧ 0 ≤ ( normop ‘ 𝑇 ) ) → ( 0 < ( normop ‘ 𝑇 ) ↔ ( normop ‘ 𝑇 ) ≠ 0 ) ) |
| 6 |
1 2 5
|
syl2anc |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 0 < ( normop ‘ 𝑇 ) ↔ ( normop ‘ 𝑇 ) ≠ 0 ) ) |
| 7 |
6
|
bicomd |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( ( normop ‘ 𝑇 ) ≠ 0 ↔ 0 < ( normop ‘ 𝑇 ) ) ) |