Metamath Proof Explorer


Theorem nmopgt0

Description: A linear Hilbert space operator that is not identically zero has a positive norm. (Contributed by NM, 9-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmopgt0 ( 𝑇 : ℋ ⟶ ℋ → ( ( normop𝑇 ) ≠ 0 ↔ 0 < ( normop𝑇 ) ) )

Proof

Step Hyp Ref Expression
1 nmopxr ( 𝑇 : ℋ ⟶ ℋ → ( normop𝑇 ) ∈ ℝ* )
2 nmopge0 ( 𝑇 : ℋ ⟶ ℋ → 0 ≤ ( normop𝑇 ) )
3 0xr 0 ∈ ℝ*
4 xrleltne ( ( 0 ∈ ℝ* ∧ ( normop𝑇 ) ∈ ℝ* ∧ 0 ≤ ( normop𝑇 ) ) → ( 0 < ( normop𝑇 ) ↔ ( normop𝑇 ) ≠ 0 ) )
5 3 4 mp3an1 ( ( ( normop𝑇 ) ∈ ℝ* ∧ 0 ≤ ( normop𝑇 ) ) → ( 0 < ( normop𝑇 ) ↔ ( normop𝑇 ) ≠ 0 ) )
6 1 2 5 syl2anc ( 𝑇 : ℋ ⟶ ℋ → ( 0 < ( normop𝑇 ) ↔ ( normop𝑇 ) ≠ 0 ) )
7 6 bicomd ( 𝑇 : ℋ ⟶ ℋ → ( ( normop𝑇 ) ≠ 0 ↔ 0 < ( normop𝑇 ) ) )