Step |
Hyp |
Ref |
Expression |
1 |
|
nmoprepnf |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( ( normop ‘ 𝑇 ) ∈ ℝ ↔ ( normop ‘ 𝑇 ) ≠ +∞ ) ) |
2 |
|
df-ne |
⊢ ( ( normop ‘ 𝑇 ) ≠ +∞ ↔ ¬ ( normop ‘ 𝑇 ) = +∞ ) |
3 |
1 2
|
bitrdi |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( ( normop ‘ 𝑇 ) ∈ ℝ ↔ ¬ ( normop ‘ 𝑇 ) = +∞ ) ) |
4 |
|
xor3 |
⊢ ( ¬ ( ( normop ‘ 𝑇 ) ∈ ℝ ↔ ( normop ‘ 𝑇 ) = +∞ ) ↔ ( ( normop ‘ 𝑇 ) ∈ ℝ ↔ ¬ ( normop ‘ 𝑇 ) = +∞ ) ) |
5 |
|
nbior |
⊢ ( ¬ ( ( normop ‘ 𝑇 ) ∈ ℝ ↔ ( normop ‘ 𝑇 ) = +∞ ) → ( ( normop ‘ 𝑇 ) ∈ ℝ ∨ ( normop ‘ 𝑇 ) = +∞ ) ) |
6 |
4 5
|
sylbir |
⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℝ ↔ ¬ ( normop ‘ 𝑇 ) = +∞ ) → ( ( normop ‘ 𝑇 ) ∈ ℝ ∨ ( normop ‘ 𝑇 ) = +∞ ) ) |
7 |
|
mnfltxr |
⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℝ ∨ ( normop ‘ 𝑇 ) = +∞ ) → -∞ < ( normop ‘ 𝑇 ) ) |
8 |
3 6 7
|
3syl |
⊢ ( 𝑇 : ℋ ⟶ ℋ → -∞ < ( normop ‘ 𝑇 ) ) |