Step |
Hyp |
Ref |
Expression |
1 |
|
nmophm.1 |
⊢ 𝑇 ∈ BndLinOp |
2 |
|
bdopf |
⊢ ( 𝑇 ∈ BndLinOp → 𝑇 : ℋ ⟶ ℋ ) |
3 |
1 2
|
ax-mp |
⊢ 𝑇 : ℋ ⟶ ℋ |
4 |
|
homval |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
5 |
3 4
|
mp3an2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
6 |
5
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) = ( normℎ ‘ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
7 |
3
|
ffvelrni |
⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
8 |
|
norm-iii |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) → ( normℎ ‘ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
9 |
7 8
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
10 |
6 9
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) = ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
11 |
10
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) = ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
12 |
|
normcl |
⊢ ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
13 |
7 12
|
syl |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
14 |
13
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
15 |
|
abscl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
16 |
|
absge0 |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) ) |
17 |
15 16
|
jca |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) |
18 |
17
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) |
19 |
|
nmoplb |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑇 ) ) |
20 |
3 19
|
mp3an1 |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑇 ) ) |
21 |
20
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑇 ) ) |
22 |
|
nmopre |
⊢ ( 𝑇 ∈ BndLinOp → ( normop ‘ 𝑇 ) ∈ ℝ ) |
23 |
1 22
|
ax-mp |
⊢ ( normop ‘ 𝑇 ) ∈ ℝ |
24 |
|
lemul2a |
⊢ ( ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ ( normop ‘ 𝑇 ) ∈ ℝ ∧ ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) ∧ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑇 ) ) → ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) |
25 |
23 24
|
mp3anl2 |
⊢ ( ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) ∧ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑇 ) ) → ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) |
26 |
14 18 21 25
|
syl21anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) |
27 |
11 26
|
eqbrtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) |
28 |
27
|
ex |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) ) |
29 |
28
|
ralrimiva |
⊢ ( 𝐴 ∈ ℂ → ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) ) |
30 |
|
homulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ) |
31 |
3 30
|
mpan2 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ) |
32 |
|
remulcl |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ ( normop ‘ 𝑇 ) ∈ ℝ ) → ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ∈ ℝ ) |
33 |
15 23 32
|
sylancl |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ∈ ℝ ) |
34 |
33
|
rexrd |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ∈ ℝ* ) |
35 |
|
nmopub |
⊢ ( ( ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ∧ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ∈ ℝ* ) → ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) ) ) |
36 |
31 34 35
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) ) ) |
37 |
29 36
|
mpbird |
⊢ ( 𝐴 ∈ ℂ → ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) |
38 |
|
fveq2 |
⊢ ( 𝐴 = 0 → ( abs ‘ 𝐴 ) = ( abs ‘ 0 ) ) |
39 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
40 |
38 39
|
eqtrdi |
⊢ ( 𝐴 = 0 → ( abs ‘ 𝐴 ) = 0 ) |
41 |
40
|
oveq1d |
⊢ ( 𝐴 = 0 → ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) = ( 0 · ( normop ‘ 𝑇 ) ) ) |
42 |
23
|
recni |
⊢ ( normop ‘ 𝑇 ) ∈ ℂ |
43 |
42
|
mul02i |
⊢ ( 0 · ( normop ‘ 𝑇 ) ) = 0 |
44 |
41 43
|
eqtrdi |
⊢ ( 𝐴 = 0 → ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) = 0 ) |
45 |
44
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 = 0 ) → ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) = 0 ) |
46 |
|
nmopge0 |
⊢ ( ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ → 0 ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
47 |
31 46
|
syl |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
48 |
47
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 = 0 ) → 0 ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
49 |
45 48
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 = 0 ) → ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
50 |
|
nmoplb |
⊢ ( ( ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
51 |
31 50
|
syl3an1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
52 |
51
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
53 |
11 52
|
eqbrtrrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
54 |
53
|
adantllr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
55 |
13
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
56 |
|
nmopxr |
⊢ ( ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ → ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∈ ℝ* ) |
57 |
31 56
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∈ ℝ* ) |
58 |
|
nmopgtmnf |
⊢ ( ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ → -∞ < ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
59 |
31 58
|
syl |
⊢ ( 𝐴 ∈ ℂ → -∞ < ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
60 |
|
xrre |
⊢ ( ( ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∈ ℝ* ∧ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ∈ ℝ ) ∧ ( -∞ < ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∧ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) ) → ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∈ ℝ ) |
61 |
57 33 59 37 60
|
syl22anc |
⊢ ( 𝐴 ∈ ℂ → ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∈ ℝ ) |
62 |
61
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℋ ) → ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∈ ℝ ) |
63 |
15
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℋ ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
64 |
|
absgt0 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ≠ 0 ↔ 0 < ( abs ‘ 𝐴 ) ) ) |
65 |
64
|
biimpa |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 0 < ( abs ‘ 𝐴 ) ) |
66 |
65
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℋ ) → 0 < ( abs ‘ 𝐴 ) ) |
67 |
|
lemuldiv2 |
⊢ ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∈ ℝ ∧ ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( abs ‘ 𝐴 ) ) ) → ( ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ↔ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) ) |
68 |
55 62 63 66 67
|
syl112anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℋ ) → ( ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ↔ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) ) |
69 |
68
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ↔ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) ) |
70 |
54 69
|
mpbid |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) |
71 |
70
|
ex |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℋ ) → ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) ) |
72 |
71
|
ralrimiva |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) ) |
73 |
61
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∈ ℝ ) |
74 |
15
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
75 |
|
abs00 |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) ) |
76 |
75
|
necon3bid |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0 ) ) |
77 |
76
|
biimpar |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ≠ 0 ) |
78 |
73 74 77
|
redivcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
79 |
78
|
rexrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ∈ ℝ* ) |
80 |
|
nmopub |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ∈ ℝ* ) → ( ( normop ‘ 𝑇 ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) ) ) |
81 |
3 79 80
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( normop ‘ 𝑇 ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) ) ) |
82 |
72 81
|
mpbird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( normop ‘ 𝑇 ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) |
83 |
23
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( normop ‘ 𝑇 ) ∈ ℝ ) |
84 |
|
lemuldiv2 |
⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∈ ℝ ∧ ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( abs ‘ 𝐴 ) ) ) → ( ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ↔ ( normop ‘ 𝑇 ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) ) |
85 |
83 73 74 65 84
|
syl112anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ↔ ( normop ‘ 𝑇 ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) ) |
86 |
82 85
|
mpbird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
87 |
49 86
|
pm2.61dane |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
88 |
61 33
|
letri3d |
⊢ ( 𝐴 ∈ ℂ → ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) = ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ↔ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ∧ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) ) ) |
89 |
37 87 88
|
mpbir2and |
⊢ ( 𝐴 ∈ ℂ → ( normop ‘ ( 𝐴 ·op 𝑇 ) ) = ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) |