| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmophm.1 |
⊢ 𝑇 ∈ BndLinOp |
| 2 |
|
bdopf |
⊢ ( 𝑇 ∈ BndLinOp → 𝑇 : ℋ ⟶ ℋ ) |
| 3 |
1 2
|
ax-mp |
⊢ 𝑇 : ℋ ⟶ ℋ |
| 4 |
|
homval |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 5 |
3 4
|
mp3an2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 6 |
5
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) = ( normℎ ‘ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 7 |
3
|
ffvelcdmi |
⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 8 |
|
norm-iii |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) → ( normℎ ‘ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 9 |
7 8
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑥 ) ) ) = ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 10 |
6 9
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) = ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 11 |
10
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) = ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 12 |
|
normcl |
⊢ ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 13 |
7 12
|
syl |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 14 |
13
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 15 |
|
abscl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 16 |
|
absge0 |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) ) |
| 17 |
15 16
|
jca |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) |
| 18 |
17
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) |
| 19 |
|
nmoplb |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑇 ) ) |
| 20 |
3 19
|
mp3an1 |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑇 ) ) |
| 21 |
20
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑇 ) ) |
| 22 |
|
nmopre |
⊢ ( 𝑇 ∈ BndLinOp → ( normop ‘ 𝑇 ) ∈ ℝ ) |
| 23 |
1 22
|
ax-mp |
⊢ ( normop ‘ 𝑇 ) ∈ ℝ |
| 24 |
|
lemul2a |
⊢ ( ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ ( normop ‘ 𝑇 ) ∈ ℝ ∧ ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) ∧ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑇 ) ) → ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) |
| 25 |
23 24
|
mp3anl2 |
⊢ ( ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐴 ) ) ) ∧ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑇 ) ) → ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) |
| 26 |
14 18 21 25
|
syl21anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) |
| 27 |
11 26
|
eqbrtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) |
| 28 |
27
|
ex |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) ) |
| 29 |
28
|
ralrimiva |
⊢ ( 𝐴 ∈ ℂ → ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) ) |
| 30 |
|
homulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ) |
| 31 |
3 30
|
mpan2 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ) |
| 32 |
|
remulcl |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ ( normop ‘ 𝑇 ) ∈ ℝ ) → ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ∈ ℝ ) |
| 33 |
15 23 32
|
sylancl |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ∈ ℝ ) |
| 34 |
33
|
rexrd |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ∈ ℝ* ) |
| 35 |
|
nmopub |
⊢ ( ( ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ∧ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ∈ ℝ* ) → ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) ) ) |
| 36 |
31 34 35
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) ) ) |
| 37 |
29 36
|
mpbird |
⊢ ( 𝐴 ∈ ℂ → ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) |
| 38 |
|
fveq2 |
⊢ ( 𝐴 = 0 → ( abs ‘ 𝐴 ) = ( abs ‘ 0 ) ) |
| 39 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
| 40 |
38 39
|
eqtrdi |
⊢ ( 𝐴 = 0 → ( abs ‘ 𝐴 ) = 0 ) |
| 41 |
40
|
oveq1d |
⊢ ( 𝐴 = 0 → ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) = ( 0 · ( normop ‘ 𝑇 ) ) ) |
| 42 |
23
|
recni |
⊢ ( normop ‘ 𝑇 ) ∈ ℂ |
| 43 |
42
|
mul02i |
⊢ ( 0 · ( normop ‘ 𝑇 ) ) = 0 |
| 44 |
41 43
|
eqtrdi |
⊢ ( 𝐴 = 0 → ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) = 0 ) |
| 45 |
44
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 = 0 ) → ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) = 0 ) |
| 46 |
|
nmopge0 |
⊢ ( ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ → 0 ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
| 47 |
31 46
|
syl |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
| 48 |
47
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 = 0 ) → 0 ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
| 49 |
45 48
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 = 0 ) → ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
| 50 |
|
nmoplb |
⊢ ( ( ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
| 51 |
31 50
|
syl3an1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
| 52 |
51
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑥 ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
| 53 |
11 52
|
eqbrtrrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
| 54 |
53
|
adantllr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
| 55 |
13
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 56 |
|
nmopxr |
⊢ ( ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ → ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∈ ℝ* ) |
| 57 |
31 56
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∈ ℝ* ) |
| 58 |
|
nmopgtmnf |
⊢ ( ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ → -∞ < ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
| 59 |
31 58
|
syl |
⊢ ( 𝐴 ∈ ℂ → -∞ < ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
| 60 |
|
xrre |
⊢ ( ( ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∈ ℝ* ∧ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ∈ ℝ ) ∧ ( -∞ < ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∧ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) ) → ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∈ ℝ ) |
| 61 |
57 33 59 37 60
|
syl22anc |
⊢ ( 𝐴 ∈ ℂ → ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∈ ℝ ) |
| 62 |
61
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℋ ) → ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∈ ℝ ) |
| 63 |
15
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℋ ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 64 |
|
absgt0 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ≠ 0 ↔ 0 < ( abs ‘ 𝐴 ) ) ) |
| 65 |
64
|
biimpa |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 0 < ( abs ‘ 𝐴 ) ) |
| 66 |
65
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℋ ) → 0 < ( abs ‘ 𝐴 ) ) |
| 67 |
|
lemuldiv2 |
⊢ ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∈ ℝ ∧ ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( abs ‘ 𝐴 ) ) ) → ( ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ↔ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) ) |
| 68 |
55 62 63 66 67
|
syl112anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℋ ) → ( ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ↔ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) ) |
| 69 |
68
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( ( abs ‘ 𝐴 ) · ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ↔ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) ) |
| 70 |
54 69
|
mpbid |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) |
| 71 |
70
|
ex |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝑥 ∈ ℋ ) → ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) ) |
| 72 |
71
|
ralrimiva |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) ) |
| 73 |
61
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∈ ℝ ) |
| 74 |
15
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 75 |
|
abs00 |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) ) |
| 76 |
75
|
necon3bid |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0 ) ) |
| 77 |
76
|
biimpar |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ≠ 0 ) |
| 78 |
73 74 77
|
redivcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
| 79 |
78
|
rexrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ∈ ℝ* ) |
| 80 |
|
nmopub |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ∈ ℝ* ) → ( ( normop ‘ 𝑇 ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) ) ) |
| 81 |
3 79 80
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( normop ‘ 𝑇 ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) ) ) |
| 82 |
72 81
|
mpbird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( normop ‘ 𝑇 ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) |
| 83 |
23
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( normop ‘ 𝑇 ) ∈ ℝ ) |
| 84 |
|
lemuldiv2 |
⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ∈ ℝ ∧ ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( abs ‘ 𝐴 ) ) ) → ( ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ↔ ( normop ‘ 𝑇 ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) ) |
| 85 |
83 73 74 65 84
|
syl112anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ↔ ( normop ‘ 𝑇 ) ≤ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) / ( abs ‘ 𝐴 ) ) ) ) |
| 86 |
82 85
|
mpbird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
| 87 |
49 86
|
pm2.61dane |
⊢ ( 𝐴 ∈ ℂ → ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) |
| 88 |
61 33
|
letri3d |
⊢ ( 𝐴 ∈ ℂ → ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) = ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ↔ ( ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ≤ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ∧ ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ≤ ( normop ‘ ( 𝐴 ·op 𝑇 ) ) ) ) ) |
| 89 |
37 87 88
|
mpbir2and |
⊢ ( 𝐴 ∈ ℂ → ( normop ‘ ( 𝐴 ·op 𝑇 ) ) = ( ( abs ‘ 𝐴 ) · ( normop ‘ 𝑇 ) ) ) |