Step |
Hyp |
Ref |
Expression |
1 |
|
nmopsetretHIL |
⊢ ( 𝑇 : ℋ ⟶ ℋ → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ ) |
2 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
3 |
1 2
|
sstrdi |
⊢ ( 𝑇 : ℋ ⟶ ℋ → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ* ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ* ) |
5 |
|
fveq2 |
⊢ ( 𝑦 = 𝐴 → ( normℎ ‘ 𝑦 ) = ( normℎ ‘ 𝐴 ) ) |
6 |
5
|
breq1d |
⊢ ( 𝑦 = 𝐴 → ( ( normℎ ‘ 𝑦 ) ≤ 1 ↔ ( normℎ ‘ 𝐴 ) ≤ 1 ) ) |
7 |
|
2fveq3 |
⊢ ( 𝑦 = 𝐴 → ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ) |
8 |
7
|
eqeq2d |
⊢ ( 𝑦 = 𝐴 → ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ↔ ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
9 |
6 8
|
anbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝐴 ) ≤ 1 ∧ ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) ) |
10 |
|
eqid |
⊢ ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) |
11 |
10
|
biantru |
⊢ ( ( normℎ ‘ 𝐴 ) ≤ 1 ↔ ( ( normℎ ‘ 𝐴 ) ≤ 1 ∧ ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
12 |
9 11
|
bitr4di |
⊢ ( 𝑦 = 𝐴 → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ( normℎ ‘ 𝐴 ) ≤ 1 ) ) |
13 |
12
|
rspcev |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
14 |
|
fvex |
⊢ ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ V |
15 |
|
eqeq1 |
⊢ ( 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) → ( 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ↔ ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
16 |
15
|
anbi2d |
⊢ ( 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
17 |
16
|
rexbidv |
⊢ ( 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) → ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
18 |
14 17
|
elab |
⊢ ( ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
19 |
13 18
|
sylibr |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ) |
20 |
19
|
3adant1 |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ) |
21 |
|
supxrub |
⊢ ( ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ* ∧ ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
22 |
4 20 21
|
syl2anc |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
23 |
|
nmopval |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( normop ‘ 𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
24 |
23
|
3ad2ant1 |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( normop ‘ 𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
25 |
22 24
|
breqtrrd |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐴 ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( normop ‘ 𝑇 ) ) |