Step |
Hyp |
Ref |
Expression |
1 |
|
nmopneg.1 |
⊢ 𝑇 : ℋ ⟶ ℋ |
2 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
3 |
|
homval |
⊢ ( ( - 1 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( - 1 ·op 𝑇 ) ‘ 𝑦 ) = ( - 1 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
4 |
2 1 3
|
mp3an12 |
⊢ ( 𝑦 ∈ ℋ → ( ( - 1 ·op 𝑇 ) ‘ 𝑦 ) = ( - 1 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
5 |
4
|
fveq2d |
⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ ( ( - 1 ·op 𝑇 ) ‘ 𝑦 ) ) = ( normℎ ‘ ( - 1 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) ) |
6 |
1
|
ffvelrni |
⊢ ( 𝑦 ∈ ℋ → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
7 |
|
normneg |
⊢ ( ( 𝑇 ‘ 𝑦 ) ∈ ℋ → ( normℎ ‘ ( - 1 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) |
8 |
6 7
|
syl |
⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ ( - 1 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) |
9 |
5 8
|
eqtrd |
⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ ( ( - 1 ·op 𝑇 ) ‘ 𝑦 ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) |
10 |
9
|
eqeq2d |
⊢ ( 𝑦 ∈ ℋ → ( 𝑥 = ( normℎ ‘ ( ( - 1 ·op 𝑇 ) ‘ 𝑦 ) ) ↔ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
11 |
10
|
anbi2d |
⊢ ( 𝑦 ∈ ℋ → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( - 1 ·op 𝑇 ) ‘ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
12 |
11
|
rexbiia |
⊢ ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( - 1 ·op 𝑇 ) ‘ 𝑦 ) ) ) ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
13 |
12
|
abbii |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( - 1 ·op 𝑇 ) ‘ 𝑦 ) ) ) } = { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } |
14 |
13
|
supeq1i |
⊢ sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( - 1 ·op 𝑇 ) ‘ 𝑦 ) ) ) } , ℝ* , < ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) |
15 |
|
homulcl |
⊢ ( ( - 1 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( - 1 ·op 𝑇 ) : ℋ ⟶ ℋ ) |
16 |
2 1 15
|
mp2an |
⊢ ( - 1 ·op 𝑇 ) : ℋ ⟶ ℋ |
17 |
|
nmopval |
⊢ ( ( - 1 ·op 𝑇 ) : ℋ ⟶ ℋ → ( normop ‘ ( - 1 ·op 𝑇 ) ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( - 1 ·op 𝑇 ) ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
18 |
16 17
|
ax-mp |
⊢ ( normop ‘ ( - 1 ·op 𝑇 ) ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( ( - 1 ·op 𝑇 ) ‘ 𝑦 ) ) ) } , ℝ* , < ) |
19 |
|
nmopval |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( normop ‘ 𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
20 |
1 19
|
ax-mp |
⊢ ( normop ‘ 𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) |
21 |
14 18 20
|
3eqtr4i |
⊢ ( normop ‘ ( - 1 ·op 𝑇 ) ) = ( normop ‘ 𝑇 ) |