| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bdopf | ⊢ ( 𝑇  ∈  BndLinOp  →  𝑇 :  ℋ ⟶  ℋ ) | 
						
							| 2 |  | nmopgtmnf | ⊢ ( 𝑇 :  ℋ ⟶  ℋ  →  -∞  <  ( normop ‘ 𝑇 ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝑇  ∈  BndLinOp  →  -∞  <  ( normop ‘ 𝑇 ) ) | 
						
							| 4 |  | elbdop | ⊢ ( 𝑇  ∈  BndLinOp  ↔  ( 𝑇  ∈  LinOp  ∧  ( normop ‘ 𝑇 )  <  +∞ ) ) | 
						
							| 5 | 4 | simprbi | ⊢ ( 𝑇  ∈  BndLinOp  →  ( normop ‘ 𝑇 )  <  +∞ ) | 
						
							| 6 |  | nmopxr | ⊢ ( 𝑇 :  ℋ ⟶  ℋ  →  ( normop ‘ 𝑇 )  ∈  ℝ* ) | 
						
							| 7 |  | xrrebnd | ⊢ ( ( normop ‘ 𝑇 )  ∈  ℝ*  →  ( ( normop ‘ 𝑇 )  ∈  ℝ  ↔  ( -∞  <  ( normop ‘ 𝑇 )  ∧  ( normop ‘ 𝑇 )  <  +∞ ) ) ) | 
						
							| 8 | 1 6 7 | 3syl | ⊢ ( 𝑇  ∈  BndLinOp  →  ( ( normop ‘ 𝑇 )  ∈  ℝ  ↔  ( -∞  <  ( normop ‘ 𝑇 )  ∧  ( normop ‘ 𝑇 )  <  +∞ ) ) ) | 
						
							| 9 | 3 5 8 | mpbir2and | ⊢ ( 𝑇  ∈  BndLinOp  →  ( normop ‘ 𝑇 )  ∈  ℝ ) |