Description: The norm of a Hilbert space operator is real iff it is less than infinity. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmopreltpnf | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( ( normop ‘ 𝑇 ) ∈ ℝ ↔ ( normop ‘ 𝑇 ) < +∞ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoprepnf | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( ( normop ‘ 𝑇 ) ∈ ℝ ↔ ( normop ‘ 𝑇 ) ≠ +∞ ) ) | |
| 2 | nmopxr | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( normop ‘ 𝑇 ) ∈ ℝ* ) | |
| 3 | nltpnft | ⊢ ( ( normop ‘ 𝑇 ) ∈ ℝ* → ( ( normop ‘ 𝑇 ) = +∞ ↔ ¬ ( normop ‘ 𝑇 ) < +∞ ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( ( normop ‘ 𝑇 ) = +∞ ↔ ¬ ( normop ‘ 𝑇 ) < +∞ ) ) |
| 5 | 4 | necon2abid | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( ( normop ‘ 𝑇 ) < +∞ ↔ ( normop ‘ 𝑇 ) ≠ +∞ ) ) |
| 6 | 1 5 | bitr4d | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( ( normop ‘ 𝑇 ) ∈ ℝ ↔ ( normop ‘ 𝑇 ) < +∞ ) ) |