Metamath Proof Explorer


Theorem nmopreltpnf

Description: The norm of a Hilbert space operator is real iff it is less than infinity. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmopreltpnf ( 𝑇 : ℋ ⟶ ℋ → ( ( normop𝑇 ) ∈ ℝ ↔ ( normop𝑇 ) < +∞ ) )

Proof

Step Hyp Ref Expression
1 nmoprepnf ( 𝑇 : ℋ ⟶ ℋ → ( ( normop𝑇 ) ∈ ℝ ↔ ( normop𝑇 ) ≠ +∞ ) )
2 nmopxr ( 𝑇 : ℋ ⟶ ℋ → ( normop𝑇 ) ∈ ℝ* )
3 nltpnft ( ( normop𝑇 ) ∈ ℝ* → ( ( normop𝑇 ) = +∞ ↔ ¬ ( normop𝑇 ) < +∞ ) )
4 2 3 syl ( 𝑇 : ℋ ⟶ ℋ → ( ( normop𝑇 ) = +∞ ↔ ¬ ( normop𝑇 ) < +∞ ) )
5 4 necon2abid ( 𝑇 : ℋ ⟶ ℋ → ( ( normop𝑇 ) < +∞ ↔ ( normop𝑇 ) ≠ +∞ ) )
6 1 5 bitr4d ( 𝑇 : ℋ ⟶ ℋ → ( ( normop𝑇 ) ∈ ℝ ↔ ( normop𝑇 ) < +∞ ) )