| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ffvelcdm |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
| 2 |
|
normcl |
⊢ ( ( 𝑇 ‘ 𝑦 ) ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ) |
| 3 |
1 2
|
syl |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ) |
| 4 |
|
eleq1 |
⊢ ( 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) → ( 𝑥 ∈ ℝ ↔ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ) ) |
| 5 |
3 4
|
imbitrrid |
⊢ ( 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) → ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → 𝑥 ∈ ℝ ) ) |
| 6 |
5
|
impcom |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) → 𝑥 ∈ ℝ ) |
| 7 |
6
|
adantrl |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) → 𝑥 ∈ ℝ ) |
| 8 |
7
|
exp31 |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 𝑦 ∈ ℋ → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) → 𝑥 ∈ ℝ ) ) ) |
| 9 |
8
|
rexlimdv |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) → 𝑥 ∈ ℝ ) ) |
| 10 |
9
|
abssdv |
⊢ ( 𝑇 : ℋ ⟶ ℋ → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ ) |