Metamath Proof Explorer


Theorem nmopsetretHIL

Description: The set in the supremum of the operator norm definition df-nmop is a set of reals. (Contributed by NM, 2-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmopsetretHIL ( 𝑇 : ℋ ⟶ ℋ → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( 𝑇𝑦 ) ) ) } ⊆ ℝ )

Proof

Step Hyp Ref Expression
1 eqid ⟨ ⟨ + , · ⟩ , norm ⟩ = ⟨ ⟨ + , · ⟩ , norm
2 1 hhnv ⟨ ⟨ + , · ⟩ , norm ⟩ ∈ NrmCVec
3 df-hba ℋ = ( BaseSet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
4 1 hhnm norm = ( normCV ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
5 3 4 nmosetre ( ( ⟨ ⟨ + , · ⟩ , norm ⟩ ∈ NrmCVec ∧ 𝑇 : ℋ ⟶ ℋ ) → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( 𝑇𝑦 ) ) ) } ⊆ ℝ )
6 2 5 mpan ( 𝑇 : ℋ ⟶ ℋ → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( 𝑇𝑦 ) ) ) } ⊆ ℝ )