Description: The set in the supremum of the operator norm definition df-nmop is a set of reals. (Contributed by NM, 2-Feb-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | nmopsetretHIL | ⊢ ( 𝑇 : ℋ ⟶ ℋ → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
2 | 1 | hhnv | ⊢ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ∈ NrmCVec |
3 | df-hba | ⊢ ℋ = ( BaseSet ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) | |
4 | 1 | hhnm | ⊢ normℎ = ( normCV ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) |
5 | 3 4 | nmosetre | ⊢ ( ( 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ∈ NrmCVec ∧ 𝑇 : ℋ ⟶ ℋ ) → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ ) |
6 | 2 5 | mpan | ⊢ ( 𝑇 : ℋ ⟶ ℋ → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ ) |