| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmoptri.1 |
⊢ 𝑆 ∈ BndLinOp |
| 2 |
|
nmoptri.2 |
⊢ 𝑇 ∈ BndLinOp |
| 3 |
|
bdopf |
⊢ ( 𝑆 ∈ BndLinOp → 𝑆 : ℋ ⟶ ℋ ) |
| 4 |
1 3
|
ax-mp |
⊢ 𝑆 : ℋ ⟶ ℋ |
| 5 |
|
bdopf |
⊢ ( 𝑇 ∈ BndLinOp → 𝑇 : ℋ ⟶ ℋ ) |
| 6 |
2 5
|
ax-mp |
⊢ 𝑇 : ℋ ⟶ ℋ |
| 7 |
4 6
|
hoaddcli |
⊢ ( 𝑆 +op 𝑇 ) : ℋ ⟶ ℋ |
| 8 |
|
nmopre |
⊢ ( 𝑆 ∈ BndLinOp → ( normop ‘ 𝑆 ) ∈ ℝ ) |
| 9 |
1 8
|
ax-mp |
⊢ ( normop ‘ 𝑆 ) ∈ ℝ |
| 10 |
|
nmopre |
⊢ ( 𝑇 ∈ BndLinOp → ( normop ‘ 𝑇 ) ∈ ℝ ) |
| 11 |
2 10
|
ax-mp |
⊢ ( normop ‘ 𝑇 ) ∈ ℝ |
| 12 |
9 11
|
readdcli |
⊢ ( ( normop ‘ 𝑆 ) + ( normop ‘ 𝑇 ) ) ∈ ℝ |
| 13 |
12
|
rexri |
⊢ ( ( normop ‘ 𝑆 ) + ( normop ‘ 𝑇 ) ) ∈ ℝ* |
| 14 |
|
nmopub |
⊢ ( ( ( 𝑆 +op 𝑇 ) : ℋ ⟶ ℋ ∧ ( ( normop ‘ 𝑆 ) + ( normop ‘ 𝑇 ) ) ∈ ℝ* ) → ( ( normop ‘ ( 𝑆 +op 𝑇 ) ) ≤ ( ( normop ‘ 𝑆 ) + ( normop ‘ 𝑇 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑆 ) + ( normop ‘ 𝑇 ) ) ) ) ) |
| 15 |
7 13 14
|
mp2an |
⊢ ( ( normop ‘ ( 𝑆 +op 𝑇 ) ) ≤ ( ( normop ‘ 𝑆 ) + ( normop ‘ 𝑇 ) ) ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑆 ) + ( normop ‘ 𝑇 ) ) ) ) |
| 16 |
4 6
|
hoscli |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) ∈ ℋ ) |
| 17 |
|
normcl |
⊢ ( ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) ∈ ℋ → ( normℎ ‘ ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 18 |
16 17
|
syl |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 20 |
4
|
ffvelcdmi |
⊢ ( 𝑥 ∈ ℋ → ( 𝑆 ‘ 𝑥 ) ∈ ℋ ) |
| 21 |
|
normcl |
⊢ ( ( 𝑆 ‘ 𝑥 ) ∈ ℋ → ( normℎ ‘ ( 𝑆 ‘ 𝑥 ) ) ∈ ℝ ) |
| 22 |
20 21
|
syl |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( 𝑆 ‘ 𝑥 ) ) ∈ ℝ ) |
| 23 |
6
|
ffvelcdmi |
⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 24 |
|
normcl |
⊢ ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 25 |
23 24
|
syl |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 26 |
22 25
|
readdcld |
⊢ ( 𝑥 ∈ ℋ → ( ( normℎ ‘ ( 𝑆 ‘ 𝑥 ) ) + ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝑥 ) ) + ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 28 |
12
|
a1i |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( normop ‘ 𝑆 ) + ( normop ‘ 𝑇 ) ) ∈ ℝ ) |
| 29 |
|
hosval |
⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 30 |
4 6 29
|
mp3an12 |
⊢ ( 𝑥 ∈ ℋ → ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 31 |
30
|
fveq2d |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) ) = ( normℎ ‘ ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 32 |
|
norm-ii |
⊢ ( ( ( 𝑆 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) → ( normℎ ‘ ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( normℎ ‘ ( 𝑆 ‘ 𝑥 ) ) + ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 33 |
20 23 32
|
syl2anc |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( normℎ ‘ ( 𝑆 ‘ 𝑥 ) ) + ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 34 |
31 33
|
eqbrtrd |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normℎ ‘ ( 𝑆 ‘ 𝑥 ) ) + ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normℎ ‘ ( 𝑆 ‘ 𝑥 ) ) + ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 36 |
|
nmoplb |
⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( 𝑆 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑆 ) ) |
| 37 |
4 36
|
mp3an1 |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( 𝑆 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑆 ) ) |
| 38 |
|
nmoplb |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑇 ) ) |
| 39 |
6 38
|
mp3an1 |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑇 ) ) |
| 40 |
|
le2add |
⊢ ( ( ( ( normℎ ‘ ( 𝑆 ‘ 𝑥 ) ) ∈ ℝ ∧ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) ∧ ( ( normop ‘ 𝑆 ) ∈ ℝ ∧ ( normop ‘ 𝑇 ) ∈ ℝ ) ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑆 ) ∧ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑇 ) ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝑥 ) ) + ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( normop ‘ 𝑆 ) + ( normop ‘ 𝑇 ) ) ) ) |
| 41 |
9 11 40
|
mpanr12 |
⊢ ( ( ( normℎ ‘ ( 𝑆 ‘ 𝑥 ) ) ∈ ℝ ∧ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑆 ) ∧ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑇 ) ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝑥 ) ) + ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( normop ‘ 𝑆 ) + ( normop ‘ 𝑇 ) ) ) ) |
| 42 |
22 25 41
|
syl2anc |
⊢ ( 𝑥 ∈ ℋ → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑆 ) ∧ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑇 ) ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝑥 ) ) + ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( normop ‘ 𝑆 ) + ( normop ‘ 𝑇 ) ) ) ) |
| 43 |
42
|
adantr |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( ( normℎ ‘ ( 𝑆 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑆 ) ∧ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( normop ‘ 𝑇 ) ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝑥 ) ) + ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( normop ‘ 𝑆 ) + ( normop ‘ 𝑇 ) ) ) ) |
| 44 |
37 39 43
|
mp2and |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝑥 ) ) + ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( normop ‘ 𝑆 ) + ( normop ‘ 𝑇 ) ) ) |
| 45 |
19 27 28 35 44
|
letrd |
⊢ ( ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑆 ) + ( normop ‘ 𝑇 ) ) ) |
| 46 |
45
|
ex |
⊢ ( 𝑥 ∈ ℋ → ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) ) ≤ ( ( normop ‘ 𝑆 ) + ( normop ‘ 𝑇 ) ) ) ) |
| 47 |
15 46
|
mprgbir |
⊢ ( normop ‘ ( 𝑆 +op 𝑇 ) ) ≤ ( ( normop ‘ 𝑆 ) + ( normop ‘ 𝑇 ) ) |