| Step |
Hyp |
Ref |
Expression |
| 1 |
|
normcl |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ 𝑥 ) ∈ ℝ ) |
| 2 |
1
|
ad2antlr |
⊢ ( ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ 𝑥 ) ∈ ℝ ) |
| 3 |
|
simpllr |
⊢ ( ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
| 4 |
|
simpr |
⊢ ( ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ 𝑥 ) ≤ 1 ) |
| 5 |
|
1re |
⊢ 1 ∈ ℝ |
| 6 |
|
lemul2a |
⊢ ( ( ( ( normℎ ‘ 𝑥 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ≤ ( 𝐴 · 1 ) ) |
| 7 |
5 6
|
mp3anl2 |
⊢ ( ( ( ( normℎ ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ≤ ( 𝐴 · 1 ) ) |
| 8 |
2 3 4 7
|
syl21anc |
⊢ ( ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ≤ ( 𝐴 · 1 ) ) |
| 9 |
|
ax-1rid |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · 1 ) = 𝐴 ) |
| 10 |
9
|
ad2antrl |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) → ( 𝐴 · 1 ) = 𝐴 ) |
| 11 |
10
|
ad2antrr |
⊢ ( ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( 𝐴 · 1 ) = 𝐴 ) |
| 12 |
8 11
|
breqtrd |
⊢ ( ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ≤ 𝐴 ) |
| 13 |
|
ffvelcdm |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 14 |
|
normcl |
⊢ ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 15 |
13 14
|
syl |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 16 |
15
|
adantlr |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 17 |
|
remulcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( normℎ ‘ 𝑥 ) ∈ ℝ ) → ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ∈ ℝ ) |
| 18 |
1 17
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℋ ) → ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ∈ ℝ ) |
| 19 |
18
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝑥 ∈ ℋ ) → ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ∈ ℝ ) |
| 20 |
19
|
adantll |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) → ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ∈ ℝ ) |
| 21 |
|
simplrl |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) → 𝐴 ∈ ℝ ) |
| 22 |
|
letr |
⊢ ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ∧ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ≤ 𝐴 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) |
| 23 |
16 20 21 22
|
syl3anc |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) → ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ∧ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ≤ 𝐴 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) |
| 24 |
23
|
adantr |
⊢ ( ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ∧ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ≤ 𝐴 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) |
| 25 |
12 24
|
mpan2d |
⊢ ( ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) |
| 26 |
25
|
ex |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) → ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) ) |
| 27 |
26
|
com23 |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) → ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) ) |
| 28 |
27
|
ralimdva |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) → ( ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) → ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) ) |
| 29 |
28
|
imp |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ) → ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) |
| 30 |
|
rexr |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ℝ* ) |
| 32 |
|
nmopub |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝐴 ∈ ℝ* ) → ( ( normop ‘ 𝑇 ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) ) |
| 33 |
31 32
|
sylan2 |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) → ( ( normop ‘ 𝑇 ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) ) |
| 34 |
33
|
biimpar |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) → ( normop ‘ 𝑇 ) ≤ 𝐴 ) |
| 35 |
29 34
|
syldan |
⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ) → ( normop ‘ 𝑇 ) ≤ 𝐴 ) |
| 36 |
35
|
3impa |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ∀ 𝑥 ∈ ℋ ( normℎ ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ) → ( normop ‘ 𝑇 ) ≤ 𝐴 ) |