Metamath Proof Explorer


Theorem nmopub2tHIL

Description: An upper bound for an operator norm. (Contributed by NM, 13-Dec-2007) (New usage is discouraged.)

Ref Expression
Assertion nmopub2tHIL ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ∀ 𝑥 ∈ ℋ ( norm ‘ ( 𝑇𝑥 ) ) ≤ ( 𝐴 · ( norm𝑥 ) ) ) → ( normop𝑇 ) ≤ 𝐴 )

Proof

Step Hyp Ref Expression
1 df-hba ℋ = ( BaseSet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
2 eqid ⟨ ⟨ + , · ⟩ , norm ⟩ = ⟨ ⟨ + , · ⟩ , norm
3 2 hhnm norm = ( normCV ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
4 eqid ( ⟨ ⟨ + , · ⟩ , norm ⟩ normOpOLD ⟨ ⟨ + , · ⟩ , norm ⟩ ) = ( ⟨ ⟨ + , · ⟩ , norm ⟩ normOpOLD ⟨ ⟨ + , · ⟩ , norm ⟩ )
5 2 4 hhnmoi normop = ( ⟨ ⟨ + , · ⟩ , norm ⟩ normOpOLD ⟨ ⟨ + , · ⟩ , norm ⟩ )
6 2 hhnv ⟨ ⟨ + , · ⟩ , norm ⟩ ∈ NrmCVec
7 1 1 3 3 5 6 6 nmoub2i ( ( 𝑇 : ℋ ⟶ ℋ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ∀ 𝑥 ∈ ℋ ( norm ‘ ( 𝑇𝑥 ) ) ≤ ( 𝐴 · ( norm𝑥 ) ) ) → ( normop𝑇 ) ≤ 𝐴 )