| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unoplin |
⊢ ( 𝑇 ∈ UniOp → 𝑇 ∈ LinOp ) |
| 2 |
|
lnopf |
⊢ ( 𝑇 ∈ LinOp → 𝑇 : ℋ ⟶ ℋ ) |
| 3 |
1 2
|
syl |
⊢ ( 𝑇 ∈ UniOp → 𝑇 : ℋ ⟶ ℋ ) |
| 4 |
|
nmopval |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( normop ‘ 𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
| 5 |
3 4
|
syl |
⊢ ( 𝑇 ∈ UniOp → ( normop ‘ 𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
| 6 |
5
|
adantl |
⊢ ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) → ( normop ‘ 𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
| 7 |
|
nmopsetretHIL |
⊢ ( 𝑇 : ℋ ⟶ ℋ → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ ) |
| 8 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 9 |
7 8
|
sstrdi |
⊢ ( 𝑇 : ℋ ⟶ ℋ → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ* ) |
| 10 |
3 9
|
syl |
⊢ ( 𝑇 ∈ UniOp → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ* ) |
| 11 |
10
|
adantl |
⊢ ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ* ) |
| 12 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 13 |
11 12
|
jctir |
⊢ ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) → ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ* ∧ 1 ∈ ℝ* ) ) |
| 14 |
|
vex |
⊢ 𝑧 ∈ V |
| 15 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ↔ 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 16 |
15
|
anbi2d |
⊢ ( 𝑥 = 𝑧 → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 17 |
16
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 18 |
14 17
|
elab |
⊢ ( 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 19 |
|
unopnorm |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ) |
| 20 |
19
|
eqeq2d |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ) → ( 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ↔ 𝑧 = ( normℎ ‘ 𝑦 ) ) ) |
| 21 |
20
|
anbi2d |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ) → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( normℎ ‘ 𝑦 ) ) ) ) |
| 22 |
|
breq1 |
⊢ ( 𝑧 = ( normℎ ‘ 𝑦 ) → ( 𝑧 ≤ 1 ↔ ( normℎ ‘ 𝑦 ) ≤ 1 ) ) |
| 23 |
22
|
biimparc |
⊢ ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( normℎ ‘ 𝑦 ) ) → 𝑧 ≤ 1 ) |
| 24 |
21 23
|
biimtrdi |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ) → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) → 𝑧 ≤ 1 ) ) |
| 25 |
24
|
rexlimdva |
⊢ ( 𝑇 ∈ UniOp → ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) → 𝑧 ≤ 1 ) ) |
| 26 |
25
|
imp |
⊢ ( ( 𝑇 ∈ UniOp ∧ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑧 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) → 𝑧 ≤ 1 ) |
| 27 |
18 26
|
sylan2b |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ) → 𝑧 ≤ 1 ) |
| 28 |
27
|
ralrimiva |
⊢ ( 𝑇 ∈ UniOp → ∀ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } 𝑧 ≤ 1 ) |
| 29 |
28
|
adantl |
⊢ ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) → ∀ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } 𝑧 ≤ 1 ) |
| 30 |
|
hne0 |
⊢ ( ℋ ≠ 0ℋ ↔ ∃ 𝑦 ∈ ℋ 𝑦 ≠ 0ℎ ) |
| 31 |
|
norm1hex |
⊢ ( ∃ 𝑦 ∈ ℋ 𝑦 ≠ 0ℎ ↔ ∃ 𝑦 ∈ ℋ ( normℎ ‘ 𝑦 ) = 1 ) |
| 32 |
30 31
|
sylbb |
⊢ ( ℋ ≠ 0ℋ → ∃ 𝑦 ∈ ℋ ( normℎ ‘ 𝑦 ) = 1 ) |
| 33 |
32
|
adantr |
⊢ ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) → ∃ 𝑦 ∈ ℋ ( normℎ ‘ 𝑦 ) = 1 ) |
| 34 |
|
1le1 |
⊢ 1 ≤ 1 |
| 35 |
|
breq1 |
⊢ ( ( normℎ ‘ 𝑦 ) = 1 → ( ( normℎ ‘ 𝑦 ) ≤ 1 ↔ 1 ≤ 1 ) ) |
| 36 |
34 35
|
mpbiri |
⊢ ( ( normℎ ‘ 𝑦 ) = 1 → ( normℎ ‘ 𝑦 ) ≤ 1 ) |
| 37 |
36
|
a1i |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ) → ( ( normℎ ‘ 𝑦 ) = 1 → ( normℎ ‘ 𝑦 ) ≤ 1 ) ) |
| 38 |
19
|
adantr |
⊢ ( ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ) ∧ ( normℎ ‘ 𝑦 ) = 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ) |
| 39 |
|
eqeq2 |
⊢ ( ( normℎ ‘ 𝑦 ) = 1 → ( ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ↔ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = 1 ) ) |
| 40 |
39
|
adantl |
⊢ ( ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ) ∧ ( normℎ ‘ 𝑦 ) = 1 ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = ( normℎ ‘ 𝑦 ) ↔ ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = 1 ) ) |
| 41 |
38 40
|
mpbid |
⊢ ( ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ) ∧ ( normℎ ‘ 𝑦 ) = 1 ) → ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = 1 ) |
| 42 |
41
|
eqcomd |
⊢ ( ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ) ∧ ( normℎ ‘ 𝑦 ) = 1 ) → 1 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) |
| 43 |
42
|
ex |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ) → ( ( normℎ ‘ 𝑦 ) = 1 → 1 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 44 |
37 43
|
jcad |
⊢ ( ( 𝑇 ∈ UniOp ∧ 𝑦 ∈ ℋ ) → ( ( normℎ ‘ 𝑦 ) = 1 → ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 1 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 45 |
44
|
adantll |
⊢ ( ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) ∧ 𝑦 ∈ ℋ ) → ( ( normℎ ‘ 𝑦 ) = 1 → ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 1 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 46 |
45
|
reximdva |
⊢ ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) → ( ∃ 𝑦 ∈ ℋ ( normℎ ‘ 𝑦 ) = 1 → ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 1 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 47 |
33 46
|
mpd |
⊢ ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) → ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 1 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 48 |
|
1ex |
⊢ 1 ∈ V |
| 49 |
|
eqeq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ↔ 1 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 50 |
49
|
anbi2d |
⊢ ( 𝑥 = 1 → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 1 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 51 |
50
|
rexbidv |
⊢ ( 𝑥 = 1 → ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 1 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 52 |
48 51
|
elab |
⊢ ( 1 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 1 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 53 |
47 52
|
sylibr |
⊢ ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) → 1 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ) |
| 54 |
53
|
adantr |
⊢ ( ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) ∧ 𝑧 ∈ ℝ ) → 1 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ) |
| 55 |
|
breq2 |
⊢ ( 𝑤 = 1 → ( 𝑧 < 𝑤 ↔ 𝑧 < 1 ) ) |
| 56 |
55
|
rspcev |
⊢ ( ( 1 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ∧ 𝑧 < 1 ) → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) |
| 57 |
54 56
|
sylan |
⊢ ( ( ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) ∧ 𝑧 ∈ ℝ ) ∧ 𝑧 < 1 ) → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) |
| 58 |
57
|
ex |
⊢ ( ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) ∧ 𝑧 ∈ ℝ ) → ( 𝑧 < 1 → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) ) |
| 59 |
58
|
ralrimiva |
⊢ ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) → ∀ 𝑧 ∈ ℝ ( 𝑧 < 1 → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) ) |
| 60 |
|
supxr2 |
⊢ ( ( ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ* ∧ 1 ∈ ℝ* ) ∧ ( ∀ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } 𝑧 ≤ 1 ∧ ∀ 𝑧 ∈ ℝ ( 𝑧 < 1 → ∃ 𝑤 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } 𝑧 < 𝑤 ) ) ) → sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) = 1 ) |
| 61 |
13 29 59 60
|
syl12anc |
⊢ ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) → sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) = 1 ) |
| 62 |
6 61
|
eqtrd |
⊢ ( ( ℋ ≠ 0ℋ ∧ 𝑇 ∈ UniOp ) → ( normop ‘ 𝑇 ) = 1 ) |