Step |
Hyp |
Ref |
Expression |
1 |
|
xrltso |
⊢ < Or ℝ* |
2 |
1
|
supex |
⊢ sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ∈ V |
3 |
|
ax-hilex |
⊢ ℋ ∈ V |
4 |
|
fveq1 |
⊢ ( 𝑡 = 𝑇 → ( 𝑡 ‘ 𝑦 ) = ( 𝑇 ‘ 𝑦 ) ) |
5 |
4
|
fveq2d |
⊢ ( 𝑡 = 𝑇 → ( normℎ ‘ ( 𝑡 ‘ 𝑦 ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) |
6 |
5
|
eqeq2d |
⊢ ( 𝑡 = 𝑇 → ( 𝑥 = ( normℎ ‘ ( 𝑡 ‘ 𝑦 ) ) ↔ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
7 |
6
|
anbi2d |
⊢ ( 𝑡 = 𝑇 → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑡 ‘ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
8 |
7
|
rexbidv |
⊢ ( 𝑡 = 𝑇 → ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑡 ‘ 𝑦 ) ) ) ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
9 |
8
|
abbidv |
⊢ ( 𝑡 = 𝑇 → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑡 ‘ 𝑦 ) ) ) } = { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ) |
10 |
9
|
supeq1d |
⊢ ( 𝑡 = 𝑇 → sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑡 ‘ 𝑦 ) ) ) } , ℝ* , < ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
11 |
|
df-nmop |
⊢ normop = ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑡 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
12 |
2 3 3 10 11
|
fvmptmap |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( normop ‘ 𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |