Step |
Hyp |
Ref |
Expression |
1 |
|
nmosetn0.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
nmosetn0.5 |
⊢ 𝑍 = ( 0vec ‘ 𝑈 ) |
3 |
|
nmosetn0.4 |
⊢ 𝑀 = ( normCV ‘ 𝑈 ) |
4 |
1 2
|
nvzcl |
⊢ ( 𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋 ) |
5 |
2 3
|
nvz0 |
⊢ ( 𝑈 ∈ NrmCVec → ( 𝑀 ‘ 𝑍 ) = 0 ) |
6 |
|
0le1 |
⊢ 0 ≤ 1 |
7 |
5 6
|
eqbrtrdi |
⊢ ( 𝑈 ∈ NrmCVec → ( 𝑀 ‘ 𝑍 ) ≤ 1 ) |
8 |
|
eqid |
⊢ ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) |
9 |
7 8
|
jctir |
⊢ ( 𝑈 ∈ NrmCVec → ( ( 𝑀 ‘ 𝑍 ) ≤ 1 ∧ ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) ) ) |
10 |
|
fveq2 |
⊢ ( 𝑦 = 𝑍 → ( 𝑀 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑍 ) ) |
11 |
10
|
breq1d |
⊢ ( 𝑦 = 𝑍 → ( ( 𝑀 ‘ 𝑦 ) ≤ 1 ↔ ( 𝑀 ‘ 𝑍 ) ≤ 1 ) ) |
12 |
|
2fveq3 |
⊢ ( 𝑦 = 𝑍 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) ) |
13 |
12
|
eqeq2d |
⊢ ( 𝑦 = 𝑍 → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) ) ) |
14 |
11 13
|
anbi12d |
⊢ ( 𝑦 = 𝑍 → ( ( ( 𝑀 ‘ 𝑦 ) ≤ 1 ∧ ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ( ( 𝑀 ‘ 𝑍 ) ≤ 1 ∧ ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) ) ) ) |
15 |
14
|
rspcev |
⊢ ( ( 𝑍 ∈ 𝑋 ∧ ( ( 𝑀 ‘ 𝑍 ) ≤ 1 ∧ ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) ) ) → ∃ 𝑦 ∈ 𝑋 ( ( 𝑀 ‘ 𝑦 ) ≤ 1 ∧ ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
16 |
4 9 15
|
syl2anc |
⊢ ( 𝑈 ∈ NrmCVec → ∃ 𝑦 ∈ 𝑋 ( ( 𝑀 ‘ 𝑦 ) ≤ 1 ∧ ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
17 |
|
fvex |
⊢ ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) ∈ V |
18 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) → ( 𝑥 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
19 |
18
|
anbi2d |
⊢ ( 𝑥 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) → ( ( ( 𝑀 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ( ( 𝑀 ‘ 𝑦 ) ≤ 1 ∧ ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
20 |
19
|
rexbidv |
⊢ ( 𝑥 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) → ( ∃ 𝑦 ∈ 𝑋 ( ( 𝑀 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ∃ 𝑦 ∈ 𝑋 ( ( 𝑀 ‘ 𝑦 ) ≤ 1 ∧ ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
21 |
17 20
|
elab |
⊢ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 ( ( 𝑀 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ↔ ∃ 𝑦 ∈ 𝑋 ( ( 𝑀 ‘ 𝑦 ) ≤ 1 ∧ ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
22 |
16 21
|
sylibr |
⊢ ( 𝑈 ∈ NrmCVec → ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 ( ( 𝑀 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ) |