Metamath Proof Explorer


Theorem nmosetre

Description: The set in the supremum of the operator norm definition df-nmoo is a set of reals. (Contributed by NM, 13-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmosetre.2 𝑌 = ( BaseSet ‘ 𝑊 )
nmosetre.4 𝑁 = ( normCV𝑊 )
Assertion nmosetre ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋𝑌 ) → { 𝑥 ∣ ∃ 𝑧𝑋 ( ( 𝑀𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑁 ‘ ( 𝑇𝑧 ) ) ) } ⊆ ℝ )

Proof

Step Hyp Ref Expression
1 nmosetre.2 𝑌 = ( BaseSet ‘ 𝑊 )
2 nmosetre.4 𝑁 = ( normCV𝑊 )
3 ffvelrn ( ( 𝑇 : 𝑋𝑌𝑧𝑋 ) → ( 𝑇𝑧 ) ∈ 𝑌 )
4 1 2 nvcl ( ( 𝑊 ∈ NrmCVec ∧ ( 𝑇𝑧 ) ∈ 𝑌 ) → ( 𝑁 ‘ ( 𝑇𝑧 ) ) ∈ ℝ )
5 3 4 sylan2 ( ( 𝑊 ∈ NrmCVec ∧ ( 𝑇 : 𝑋𝑌𝑧𝑋 ) ) → ( 𝑁 ‘ ( 𝑇𝑧 ) ) ∈ ℝ )
6 5 anassrs ( ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋𝑌 ) ∧ 𝑧𝑋 ) → ( 𝑁 ‘ ( 𝑇𝑧 ) ) ∈ ℝ )
7 eleq1 ( 𝑥 = ( 𝑁 ‘ ( 𝑇𝑧 ) ) → ( 𝑥 ∈ ℝ ↔ ( 𝑁 ‘ ( 𝑇𝑧 ) ) ∈ ℝ ) )
8 6 7 syl5ibr ( 𝑥 = ( 𝑁 ‘ ( 𝑇𝑧 ) ) → ( ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋𝑌 ) ∧ 𝑧𝑋 ) → 𝑥 ∈ ℝ ) )
9 8 impcom ( ( ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋𝑌 ) ∧ 𝑧𝑋 ) ∧ 𝑥 = ( 𝑁 ‘ ( 𝑇𝑧 ) ) ) → 𝑥 ∈ ℝ )
10 9 adantrl ( ( ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋𝑌 ) ∧ 𝑧𝑋 ) ∧ ( ( 𝑀𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑁 ‘ ( 𝑇𝑧 ) ) ) ) → 𝑥 ∈ ℝ )
11 10 rexlimdva2 ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋𝑌 ) → ( ∃ 𝑧𝑋 ( ( 𝑀𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑁 ‘ ( 𝑇𝑧 ) ) ) → 𝑥 ∈ ℝ ) )
12 11 abssdv ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋𝑌 ) → { 𝑥 ∣ ∃ 𝑧𝑋 ( ( 𝑀𝑧 ) ≤ 1 ∧ 𝑥 = ( 𝑁 ‘ ( 𝑇𝑧 ) ) ) } ⊆ ℝ )