Step |
Hyp |
Ref |
Expression |
1 |
|
nmotri.1 |
⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) |
2 |
|
nmotri.p |
⊢ + = ( +g ‘ 𝑇 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
4 |
|
eqid |
⊢ ( norm ‘ 𝑆 ) = ( norm ‘ 𝑆 ) |
5 |
|
eqid |
⊢ ( norm ‘ 𝑇 ) = ( norm ‘ 𝑇 ) |
6 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
7 |
|
nghmrcl1 |
⊢ ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) → 𝑆 ∈ NrmGrp ) |
8 |
7
|
3ad2ant2 |
⊢ ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → 𝑆 ∈ NrmGrp ) |
9 |
|
nghmrcl2 |
⊢ ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) → 𝑇 ∈ NrmGrp ) |
10 |
9
|
3ad2ant2 |
⊢ ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → 𝑇 ∈ NrmGrp ) |
11 |
|
id |
⊢ ( 𝑇 ∈ Abel → 𝑇 ∈ Abel ) |
12 |
|
nghmghm |
⊢ ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
13 |
|
nghmghm |
⊢ ( 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) → 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
14 |
2
|
ghmplusg |
⊢ ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝐹 ∘f + 𝐺 ) ∈ ( 𝑆 GrpHom 𝑇 ) ) |
15 |
11 12 13 14
|
syl3an |
⊢ ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → ( 𝐹 ∘f + 𝐺 ) ∈ ( 𝑆 GrpHom 𝑇 ) ) |
16 |
1
|
nghmcl |
⊢ ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) → ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) |
17 |
16
|
3ad2ant2 |
⊢ ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) |
18 |
1
|
nghmcl |
⊢ ( 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) → ( 𝑁 ‘ 𝐺 ) ∈ ℝ ) |
19 |
18
|
3ad2ant3 |
⊢ ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → ( 𝑁 ‘ 𝐺 ) ∈ ℝ ) |
20 |
17 19
|
readdcld |
⊢ ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → ( ( 𝑁 ‘ 𝐹 ) + ( 𝑁 ‘ 𝐺 ) ) ∈ ℝ ) |
21 |
12
|
3ad2ant2 |
⊢ ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
22 |
1
|
nmoge0 |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → 0 ≤ ( 𝑁 ‘ 𝐹 ) ) |
23 |
8 10 21 22
|
syl3anc |
⊢ ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → 0 ≤ ( 𝑁 ‘ 𝐹 ) ) |
24 |
13
|
3ad2ant3 |
⊢ ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
25 |
1
|
nmoge0 |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → 0 ≤ ( 𝑁 ‘ 𝐺 ) ) |
26 |
8 10 24 25
|
syl3anc |
⊢ ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → 0 ≤ ( 𝑁 ‘ 𝐺 ) ) |
27 |
17 19 23 26
|
addge0d |
⊢ ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → 0 ≤ ( ( 𝑁 ‘ 𝐹 ) + ( 𝑁 ‘ 𝐺 ) ) ) |
28 |
10
|
adantr |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑇 ∈ NrmGrp ) |
29 |
|
ngpgrp |
⊢ ( 𝑇 ∈ NrmGrp → 𝑇 ∈ Grp ) |
30 |
28 29
|
syl |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑇 ∈ Grp ) |
31 |
21
|
adantr |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
32 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
33 |
3 32
|
ghmf |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
34 |
31 33
|
syl |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
35 |
|
simprl |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
36 |
34 35
|
ffvelrnd |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ) |
37 |
24
|
adantr |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
38 |
3 32
|
ghmf |
⊢ ( 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
39 |
37 38
|
syl |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
40 |
39 35
|
ffvelrnd |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ) |
41 |
32 2
|
grpcl |
⊢ ( ( 𝑇 ∈ Grp ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ) → ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ∈ ( Base ‘ 𝑇 ) ) |
42 |
30 36 40 41
|
syl3anc |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ∈ ( Base ‘ 𝑇 ) ) |
43 |
32 5
|
nmcl |
⊢ ( ( 𝑇 ∈ NrmGrp ∧ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ∈ ( Base ‘ 𝑇 ) ) → ( ( norm ‘ 𝑇 ) ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ∈ ℝ ) |
44 |
28 42 43
|
syl2anc |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ 𝑇 ) ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ∈ ℝ ) |
45 |
32 5
|
nmcl |
⊢ ( ( 𝑇 ∈ NrmGrp ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ) → ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
46 |
28 36 45
|
syl2anc |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
47 |
32 5
|
nmcl |
⊢ ( ( 𝑇 ∈ NrmGrp ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ) → ( ( norm ‘ 𝑇 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ ℝ ) |
48 |
28 40 47
|
syl2anc |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ 𝑇 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ ℝ ) |
49 |
46 48
|
readdcld |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) + ( ( norm ‘ 𝑇 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ ℝ ) |
50 |
17
|
adantr |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) |
51 |
|
simpl |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
52 |
3 4
|
nmcl |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ∈ ℝ ) |
53 |
8 51 52
|
syl2an |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ∈ ℝ ) |
54 |
50 53
|
remulcld |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝑁 ‘ 𝐹 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) ∈ ℝ ) |
55 |
19
|
adantr |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑁 ‘ 𝐺 ) ∈ ℝ ) |
56 |
55 53
|
remulcld |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝑁 ‘ 𝐺 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) ∈ ℝ ) |
57 |
54 56
|
readdcld |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( ( 𝑁 ‘ 𝐹 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) + ( ( 𝑁 ‘ 𝐺 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
58 |
32 5 2
|
nmtri |
⊢ ( ( 𝑇 ∈ NrmGrp ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ) → ( ( norm ‘ 𝑇 ) ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ≤ ( ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) + ( ( norm ‘ 𝑇 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
59 |
28 36 40 58
|
syl3anc |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ 𝑇 ) ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ≤ ( ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) + ( ( norm ‘ 𝑇 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
60 |
|
simpl2 |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ) |
61 |
1 3 4 5
|
nmoi |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) ) |
62 |
60 35 61
|
syl2anc |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) ) |
63 |
|
simpl3 |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) |
64 |
1 3 4 5
|
nmoi |
⊢ ( ( 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( norm ‘ 𝑇 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ≤ ( ( 𝑁 ‘ 𝐺 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) ) |
65 |
63 35 64
|
syl2anc |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ 𝑇 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ≤ ( ( 𝑁 ‘ 𝐺 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) ) |
66 |
46 48 54 56 62 65
|
le2addd |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) + ( ( norm ‘ 𝑇 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ ( ( ( 𝑁 ‘ 𝐹 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) + ( ( 𝑁 ‘ 𝐺 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) ) ) |
67 |
44 49 57 59 66
|
letrd |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ 𝑇 ) ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ≤ ( ( ( 𝑁 ‘ 𝐹 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) + ( ( 𝑁 ‘ 𝐺 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) ) ) |
68 |
34
|
ffnd |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝐹 Fn ( Base ‘ 𝑆 ) ) |
69 |
39
|
ffnd |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝐺 Fn ( Base ‘ 𝑆 ) ) |
70 |
|
fvexd |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( Base ‘ 𝑆 ) ∈ V ) |
71 |
|
fnfvof |
⊢ ( ( ( 𝐹 Fn ( Base ‘ 𝑆 ) ∧ 𝐺 Fn ( Base ‘ 𝑆 ) ) ∧ ( ( Base ‘ 𝑆 ) ∈ V ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) |
72 |
68 69 70 35 71
|
syl22anc |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) |
73 |
72
|
fveq2d |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ 𝑇 ) ‘ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑥 ) ) = ( ( norm ‘ 𝑇 ) ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ) |
74 |
50
|
recnd |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑁 ‘ 𝐹 ) ∈ ℂ ) |
75 |
55
|
recnd |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑁 ‘ 𝐺 ) ∈ ℂ ) |
76 |
53
|
recnd |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ∈ ℂ ) |
77 |
74 75 76
|
adddird |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( ( 𝑁 ‘ 𝐹 ) + ( 𝑁 ‘ 𝐺 ) ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) = ( ( ( 𝑁 ‘ 𝐹 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) + ( ( 𝑁 ‘ 𝐺 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) ) ) |
78 |
67 73 77
|
3brtr4d |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ 𝑇 ) ‘ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑥 ) ) ≤ ( ( ( 𝑁 ‘ 𝐹 ) + ( 𝑁 ‘ 𝐺 ) ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) ) |
79 |
1 3 4 5 6 8 10 15 20 27 78
|
nmolb2d |
⊢ ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → ( 𝑁 ‘ ( 𝐹 ∘f + 𝐺 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) + ( 𝑁 ‘ 𝐺 ) ) ) |