| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmotri.1 |
⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) |
| 2 |
|
nmotri.p |
⊢ + = ( +g ‘ 𝑇 ) |
| 3 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 4 |
|
eqid |
⊢ ( norm ‘ 𝑆 ) = ( norm ‘ 𝑆 ) |
| 5 |
|
eqid |
⊢ ( norm ‘ 𝑇 ) = ( norm ‘ 𝑇 ) |
| 6 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
| 7 |
|
nghmrcl1 |
⊢ ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) → 𝑆 ∈ NrmGrp ) |
| 8 |
7
|
3ad2ant2 |
⊢ ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → 𝑆 ∈ NrmGrp ) |
| 9 |
|
nghmrcl2 |
⊢ ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) → 𝑇 ∈ NrmGrp ) |
| 10 |
9
|
3ad2ant2 |
⊢ ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → 𝑇 ∈ NrmGrp ) |
| 11 |
|
id |
⊢ ( 𝑇 ∈ Abel → 𝑇 ∈ Abel ) |
| 12 |
|
nghmghm |
⊢ ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 13 |
|
nghmghm |
⊢ ( 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) → 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 14 |
2
|
ghmplusg |
⊢ ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝐹 ∘f + 𝐺 ) ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 15 |
11 12 13 14
|
syl3an |
⊢ ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → ( 𝐹 ∘f + 𝐺 ) ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 16 |
1
|
nghmcl |
⊢ ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) → ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) |
| 17 |
16
|
3ad2ant2 |
⊢ ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) |
| 18 |
1
|
nghmcl |
⊢ ( 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) → ( 𝑁 ‘ 𝐺 ) ∈ ℝ ) |
| 19 |
18
|
3ad2ant3 |
⊢ ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → ( 𝑁 ‘ 𝐺 ) ∈ ℝ ) |
| 20 |
17 19
|
readdcld |
⊢ ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → ( ( 𝑁 ‘ 𝐹 ) + ( 𝑁 ‘ 𝐺 ) ) ∈ ℝ ) |
| 21 |
12
|
3ad2ant2 |
⊢ ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 22 |
1
|
nmoge0 |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → 0 ≤ ( 𝑁 ‘ 𝐹 ) ) |
| 23 |
8 10 21 22
|
syl3anc |
⊢ ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → 0 ≤ ( 𝑁 ‘ 𝐹 ) ) |
| 24 |
13
|
3ad2ant3 |
⊢ ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 25 |
1
|
nmoge0 |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → 0 ≤ ( 𝑁 ‘ 𝐺 ) ) |
| 26 |
8 10 24 25
|
syl3anc |
⊢ ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → 0 ≤ ( 𝑁 ‘ 𝐺 ) ) |
| 27 |
17 19 23 26
|
addge0d |
⊢ ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → 0 ≤ ( ( 𝑁 ‘ 𝐹 ) + ( 𝑁 ‘ 𝐺 ) ) ) |
| 28 |
10
|
adantr |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑇 ∈ NrmGrp ) |
| 29 |
|
ngpgrp |
⊢ ( 𝑇 ∈ NrmGrp → 𝑇 ∈ Grp ) |
| 30 |
28 29
|
syl |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑇 ∈ Grp ) |
| 31 |
21
|
adantr |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 32 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
| 33 |
3 32
|
ghmf |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 34 |
31 33
|
syl |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 35 |
|
simprl |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
| 36 |
34 35
|
ffvelcdmd |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ) |
| 37 |
24
|
adantr |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 38 |
3 32
|
ghmf |
⊢ ( 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 39 |
37 38
|
syl |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 40 |
39 35
|
ffvelcdmd |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ) |
| 41 |
32 2
|
grpcl |
⊢ ( ( 𝑇 ∈ Grp ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ) → ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ∈ ( Base ‘ 𝑇 ) ) |
| 42 |
30 36 40 41
|
syl3anc |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ∈ ( Base ‘ 𝑇 ) ) |
| 43 |
32 5
|
nmcl |
⊢ ( ( 𝑇 ∈ NrmGrp ∧ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ∈ ( Base ‘ 𝑇 ) ) → ( ( norm ‘ 𝑇 ) ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 44 |
28 42 43
|
syl2anc |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ 𝑇 ) ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 45 |
32 5
|
nmcl |
⊢ ( ( 𝑇 ∈ NrmGrp ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ) → ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 46 |
28 36 45
|
syl2anc |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 47 |
32 5
|
nmcl |
⊢ ( ( 𝑇 ∈ NrmGrp ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ) → ( ( norm ‘ 𝑇 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ ℝ ) |
| 48 |
28 40 47
|
syl2anc |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ 𝑇 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ ℝ ) |
| 49 |
46 48
|
readdcld |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) + ( ( norm ‘ 𝑇 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 50 |
17
|
adantr |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) |
| 51 |
|
simpl |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
| 52 |
3 4
|
nmcl |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ∈ ℝ ) |
| 53 |
8 51 52
|
syl2an |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ∈ ℝ ) |
| 54 |
50 53
|
remulcld |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝑁 ‘ 𝐹 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 55 |
19
|
adantr |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑁 ‘ 𝐺 ) ∈ ℝ ) |
| 56 |
55 53
|
remulcld |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝑁 ‘ 𝐺 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 57 |
54 56
|
readdcld |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( ( 𝑁 ‘ 𝐹 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) + ( ( 𝑁 ‘ 𝐺 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 58 |
32 5 2
|
nmtri |
⊢ ( ( 𝑇 ∈ NrmGrp ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ) → ( ( norm ‘ 𝑇 ) ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ≤ ( ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) + ( ( norm ‘ 𝑇 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 59 |
28 36 40 58
|
syl3anc |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ 𝑇 ) ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ≤ ( ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) + ( ( norm ‘ 𝑇 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 60 |
|
simpl2 |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ) |
| 61 |
1 3 4 5
|
nmoi |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) ) |
| 62 |
60 35 61
|
syl2anc |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) ) |
| 63 |
|
simpl3 |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) |
| 64 |
1 3 4 5
|
nmoi |
⊢ ( ( 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( norm ‘ 𝑇 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ≤ ( ( 𝑁 ‘ 𝐺 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) ) |
| 65 |
63 35 64
|
syl2anc |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ 𝑇 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ≤ ( ( 𝑁 ‘ 𝐺 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) ) |
| 66 |
46 48 54 56 62 65
|
le2addd |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) + ( ( norm ‘ 𝑇 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ ( ( ( 𝑁 ‘ 𝐹 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) + ( ( 𝑁 ‘ 𝐺 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) ) ) |
| 67 |
44 49 57 59 66
|
letrd |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ 𝑇 ) ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ≤ ( ( ( 𝑁 ‘ 𝐹 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) + ( ( 𝑁 ‘ 𝐺 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) ) ) |
| 68 |
34
|
ffnd |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝐹 Fn ( Base ‘ 𝑆 ) ) |
| 69 |
39
|
ffnd |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝐺 Fn ( Base ‘ 𝑆 ) ) |
| 70 |
|
fvexd |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( Base ‘ 𝑆 ) ∈ V ) |
| 71 |
|
fnfvof |
⊢ ( ( ( 𝐹 Fn ( Base ‘ 𝑆 ) ∧ 𝐺 Fn ( Base ‘ 𝑆 ) ) ∧ ( ( Base ‘ 𝑆 ) ∈ V ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) |
| 72 |
68 69 70 35 71
|
syl22anc |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) |
| 73 |
72
|
fveq2d |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ 𝑇 ) ‘ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑥 ) ) = ( ( norm ‘ 𝑇 ) ‘ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 74 |
50
|
recnd |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑁 ‘ 𝐹 ) ∈ ℂ ) |
| 75 |
55
|
recnd |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑁 ‘ 𝐺 ) ∈ ℂ ) |
| 76 |
53
|
recnd |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ∈ ℂ ) |
| 77 |
74 75 76
|
adddird |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( ( 𝑁 ‘ 𝐹 ) + ( 𝑁 ‘ 𝐺 ) ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) = ( ( ( 𝑁 ‘ 𝐹 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) + ( ( 𝑁 ‘ 𝐺 ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) ) ) |
| 78 |
67 73 77
|
3brtr4d |
⊢ ( ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ 𝑇 ) ‘ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑥 ) ) ≤ ( ( ( 𝑁 ‘ 𝐹 ) + ( 𝑁 ‘ 𝐺 ) ) · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) ) |
| 79 |
1 3 4 5 6 8 10 15 20 27 78
|
nmolb2d |
⊢ ( ( 𝑇 ∈ Abel ∧ 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 NGHom 𝑇 ) ) → ( 𝑁 ‘ ( 𝐹 ∘f + 𝐺 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) + ( 𝑁 ‘ 𝐺 ) ) ) |