Metamath Proof Explorer
		
		
		
		Description:  There does not exist at most one set such that T. is true.
     (Contributed by Anthony Hart, 13-Sep-2011)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | nmotru | ⊢  ¬  ∃* 𝑥 ⊤ | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | extru | ⊢ ∃ 𝑥 ⊤ | 
						
							| 2 |  | neutru | ⊢ ¬  ∃! 𝑥 ⊤ | 
						
							| 3 |  | jcn | ⊢ ( ∃ 𝑥 ⊤  →  ( ¬  ∃! 𝑥 ⊤  →  ¬  ( ∃ 𝑥 ⊤  →  ∃! 𝑥 ⊤ ) ) ) | 
						
							| 4 | 1 2 3 | mp2 | ⊢ ¬  ( ∃ 𝑥 ⊤  →  ∃! 𝑥 ⊤ ) | 
						
							| 5 |  | moeu | ⊢ ( ∃* 𝑥 ⊤  ↔  ( ∃ 𝑥 ⊤  →  ∃! 𝑥 ⊤ ) ) | 
						
							| 6 | 4 5 | mtbir | ⊢ ¬  ∃* 𝑥 ⊤ |