| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmoubi.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | nmoubi.y | ⊢ 𝑌  =  ( BaseSet ‘ 𝑊 ) | 
						
							| 3 |  | nmoubi.l | ⊢ 𝐿  =  ( normCV ‘ 𝑈 ) | 
						
							| 4 |  | nmoubi.m | ⊢ 𝑀  =  ( normCV ‘ 𝑊 ) | 
						
							| 5 |  | nmoubi.3 | ⊢ 𝑁  =  ( 𝑈  normOpOLD  𝑊 ) | 
						
							| 6 |  | nmoubi.u | ⊢ 𝑈  ∈  NrmCVec | 
						
							| 7 |  | nmoubi.w | ⊢ 𝑊  ∈  NrmCVec | 
						
							| 8 | 1 2 3 4 5 6 7 | nmoub3i | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  𝐴  ∈  ℝ  ∧  ∀ 𝑥  ∈  𝑋 ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘ 𝑥 ) ) )  →  ( 𝑁 ‘ 𝑇 )  ≤  ( abs ‘ 𝐴 ) ) | 
						
							| 9 | 8 | 3adant2r | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ∀ 𝑥  ∈  𝑋 ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘ 𝑥 ) ) )  →  ( 𝑁 ‘ 𝑇 )  ≤  ( abs ‘ 𝐴 ) ) | 
						
							| 10 |  | absid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( abs ‘ 𝐴 )  =  𝐴 ) | 
						
							| 11 | 10 | 3ad2ant2 | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ∀ 𝑥  ∈  𝑋 ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘ 𝑥 ) ) )  →  ( abs ‘ 𝐴 )  =  𝐴 ) | 
						
							| 12 | 9 11 | breqtrd | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ∀ 𝑥  ∈  𝑋 ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘ 𝑥 ) ) )  →  ( 𝑁 ‘ 𝑇 )  ≤  𝐴 ) |