Step |
Hyp |
Ref |
Expression |
1 |
|
nmoubi.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
nmoubi.y |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
3 |
|
nmoubi.l |
⊢ 𝐿 = ( normCV ‘ 𝑈 ) |
4 |
|
nmoubi.m |
⊢ 𝑀 = ( normCV ‘ 𝑊 ) |
5 |
|
nmoubi.3 |
⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) |
6 |
|
nmoubi.u |
⊢ 𝑈 ∈ NrmCVec |
7 |
|
nmoubi.w |
⊢ 𝑊 ∈ NrmCVec |
8 |
1 2 3 4 5 6 7
|
nmoub3i |
⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝐴 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) → ( 𝑁 ‘ 𝑇 ) ≤ ( abs ‘ 𝐴 ) ) |
9 |
8
|
3adant2r |
⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) → ( 𝑁 ‘ 𝑇 ) ≤ ( abs ‘ 𝐴 ) ) |
10 |
|
absid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( abs ‘ 𝐴 ) = 𝐴 ) |
11 |
10
|
3ad2ant2 |
⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) → ( abs ‘ 𝐴 ) = 𝐴 ) |
12 |
9 11
|
breqtrd |
⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) → ( 𝑁 ‘ 𝑇 ) ≤ 𝐴 ) |